Tensor product of state spaces

Definition and properties

Tensor product space

$$\varepsilon = \varepsilon_1 \otimes \varepsilon_2$$

if there is associated with each pair of vectors, $|\psi(1)\rangle \in \varepsilon_1$ and $|\psi(2)\rangle \in \varepsilon_2$, a vector of ε , denoted by $|\psi(1)\rangle \otimes |\psi(2)\rangle$.

- 1. It is **linear** with respect to multiplication by complex numbers.
- 2. It is **distributive** with respect to vector addition.
- 3. The set of basis $|u_i(1)\rangle \otimes |v_l(2)\rangle$ constitutes a basis in ε . The dimension of ε is N_1N_2 .

$$ig\langle arphi'(1)\chi'(2)ig|arphi(1)\chi(2)ig
angle =ig\langle arphi'(1)ig|arphi(1)ig
angle ig\langle \chi'(2)ig|\chi(2)ig
angle \ \langle u_{i'}(1)v_{l'}(2)ig|u_i(1)v_l(2)
angle =ig\langle u_{i'}(1)ig|u_i(1)ig
angle ig\langle v_{l'}(2)ig|v_l(2)ig
angle =\delta_{ii'}\delta_{ll'}$$

Tensor product of operators

The extension of a linear operator A(1) in ε :

$$ilde{A}(1)\ket{\psi} = \sum_{i,l} c_{i,l} [A(1)\ket{u_i(1)}] \otimes \ket{v_l(2)}$$

It is easy to show that two operators such as $\tilde{A}(1)$ and $\tilde{B}(2)$ commute in ε .

The tensor product $A(1) \otimes B(2)$ is the linear operator in ε .

$$[A(1)\otimes B(2)][|\psi(1)
angle\otimes |\chi(2)
angle]=[A(1)\,|\psi(1)
angle]\otimes [B(2\,|\chi(2)
angle)]$$

Eigenvalue equations in the product space

Eigenvalue equation of A(1)

$$A(1)\left|arphi_n^i(1)\chi(2)
ight
angle = \left[A(1)\left|arphi_n^i(1)
ight
angle
ight]\otimes\left|\chi(2)
ight
angle = a_n\left|arphi_n^i(1)\chi(2)
ight
angle$$

If A(1) is an observable in ε_1 , the orthonormal system of vectors $\left|\psi_n^{i,l}\right\rangle$ is a basis in ε :

$$\left|\psi_{n}^{i,l}
ight
angle=\left|arphi_{n}^{i}(1)
ight
angle\otimes\left|v_{l}(2)
ight
angle$$

Eigenvalue equation of A(1) + B(2)

$$egin{aligned} C &= A(1) + B(2) \ C \left| arphi_n(1) \chi_p(2)
ight
angle &= (a_n + b_p) \left| arphi_n(1) \chi_p(2)
ight
angle \end{aligned}$$

The eigenvalues of C are the sums of an eigenvalue of A(1) and an eigenvalue of B(2). One can find a basis of eigenvectors of which are tensor products of an eigenvector of A(1) and an eigenvector of B(2).

Comment:

Equation (F-30) shows that the eigenvalues of C are all of the form $c_{np} = a_n + b_p$. If two different pairs of values of n and p which give the same value for c_{np} do not exist, c_{np} is non-degenerate (recall that we have assumed a_n and b_p to be non-degenerate in \mathscr{E}_1 and \mathscr{E}_2 respectively). The corresponding eigenvector of C is necessarily the tensor product $|\varphi_n(1)\rangle|\chi_p(2)\rangle$. If, on the other hand, the eigenvalue c_{np} is, for example, twofold degenerate (there exist m and q such that $c_{mq} = c_{np}$), all that can be asserted is that every eigenvector of C corresponding to this eigenvalue is written:

$$\lambda |\varphi_n(1)\rangle |\chi_p(2)\rangle + \mu |\varphi_n(1)\rangle |\chi_p(2)\rangle \tag{F-31}$$

where λ and μ are arbitrary complex numbers. In this case, therefore, there exist eigenvectors of C which are not tensor products.

$$C = \widetilde{A}(1) + \widetilde{B}(2) = A(1) \otimes \mathbb{I}(2) + \mathbb{I}(1) \otimes B(2)$$

Complete sets of commuting observables in ε

By joining two sets of commuting observables which are complete in ε_1 and ε_2 respectively, one obtains a complete set of commuting observables in ε .

Applications

System of three spin 1/2 particles

$$egin{aligned} arepsilon_S &= arepsilon_S(1) \otimes arepsilon_S(2) \otimes arepsilon_S(3) \ &\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 \ &S_z &= ilde{S}_{1z} + ilde{S}_{2z} + ilde{S}_{3z}, & ext{with} \ & ilde{S}_{iz} \ket{arepsilon_1 arepsilon_2 arepsilon_3} &= rac{\hbar}{2} arepsilon_i \ket{arepsilon_1 arepsilon_2 arepsilon_3}, & i = 1, 2, 3 \end{aligned}$$

eigenvalues : $3/2\hbar$, $1/2\hbar \times 3$, $-1/2\hbar \times 3$, $-3/2\hbar$

```
u1 = [1,0]; u2 = [0,1] > Vector{Int64} with 2 elements
Sz1 = 1/2 * [1 0 ; 0 -1] > 2×2 Matrix{Float64}:
Sz = kron(Sz1,I(2),I(2)) + kron(I(2),Sz1,I(2)) + kron(I(2),I(2),Sz1) > 8×8
Sz * kron(u2,u2,u2) > Vector{Float64} with 8 elements
eigen(Sz) > Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
```

$$S^2 = S_1^2 + S_2^2 + S_3^2 + 2\mathbf{S}_1 \cdot \mathbf{S}_2 + 2\mathbf{S}_1 \cdot \mathbf{S}_3 + 2\mathbf{S}_2 \cdot \mathbf{S}_3
onumber \ = rac{9}{4}\hbar^2 + 2(\mathbf{S}_1 \cdot \mathbf{S}_2 + \mathbf{S}_1 \cdot \mathbf{S}_3 + \mathbf{S}_2 \cdot \mathbf{S}_3)
onumber \ S^2 \ket{arepsilon_1 arepsilon_2 arepsilon_3} = rac{9}{4}\hbar^2 + rac{\hbar^2}{2}(\sigma_x^1 \sigma_x^2 + \sigma_y^1 \sigma_y^2 + \sigma_z^1 \sigma_z^2 + \cdots) \ket{arepsilon_1 arepsilon_2 arepsilon_3}$$

eigenvalues : $3/4\hbar^2 \times 4, \ 15/4\hbar^2 \times 4$

σxyz = [[0 1 ; 1 0], [0 -	1im ; 1im 0], [1 0	; 0 -1]] >	Vecto
$\sigma 12 = [kron(\sigma, I(2), I(2))]$	* kron(I(2),σ,I(2))) for σ	in σxyz]
σ 13 = [kron(σ ,I(2),I(2))	* kron(I(2),I(2),σ)) for σ	in σxyz]
$\sigma_{23} = [kron(I(2),\sigma,I(2))]$	* kron(I(2),I(2),σ)) for σ	in σxyz]
$S2 = 1/2 * (sum(\sigma 12) + sum)$	l(σ13) +sum(σ23))	> 8×8	Matrix{C	Comple
eigen(S2).values .+ 9/4	> Vector{Float64}	with 8	elements	

 $ext{ECOC}: \{S_{1z}, S_{2z}, S_{3z}\} o \{S^2, S_z\}$

₩8×8 M	atrix	{Floa	t64}:				
0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	✓ 8×8 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0	<pre>> 8×8 Matrix 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	<pre>> 8×8 Matrix{Floa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0</pre>	<pre>~ 8×8 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	<pre>> 8×8 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	<pre>> 8×8 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	<pre>~ 8×8 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>

<pre>eigen(S2).vectors</pre>	∨8×8 Matrix{Comple	xF64}:		
	0.0+0.0im	0.0+0.0im	0.0+0.0im	1.0+0.0im
	0.707107+0.0im	0.0+0.0im	-0.408248+0.0im	0.0+0.0im
	-0.707107+0.0im	0.0+0.0im	-0.408248+0.0im	0.0+0.0im
	0.0+0.0im	-0.707107+0.0im	0.0+0.0im	0.0+0.0im
	0.0+0.0im	0.0+0.0im	0.816497+0.0im	0.0+0.0im
	0.0+0.0im	0.707107+0.0im	0.0+0.0im	0.0+0.0im
	0.0+0.0im	0.0+0.0im	0.0+0.0im	0.0+0.0im
	0.0+0.0im	0.0+0.0im	0.0+0.0im	0.0+0.0im

Addition of an orbital angular momentum l=1 and a spin 1/2

$$egin{aligned} arepsilon_J &= arepsilon_L \otimes arepsilon_S \ \mathbf{J} &= \mathbf{L} + \mathbf{S} \ J_z &= ilde{L}_z + ilde{S}_z \ J^2 &= L^2 + S^2 + 2 \mathbf{L} \cdot \mathbf{S} \ &= l(l+1) \hbar^2 + rac{3}{4} \hbar^2 + 2(L_x \otimes S_x + L_y \otimes S_y + L_z \otimes S_z) \end{aligned}$$

Sxyz = 1/2 * [[Lxyz = $1/\sqrt{2} * [$]	01;10],[0-1i [010;101;0	im ; 1im 0], [1 0 1 0], 1im*[0	0;0-1]] -10;10-1	<pre></pre>	<pre>Vector{Ma 1 0],</pre>	trix{Com	þ
١	2*[1 0 0 ; 0 0 0	; 0 0 -1]]	> Vector{Matr	1X}	with 3 el	ements	
Jz = kron(Lxyz[3]	,I(2)) + kron(I(3	3),Sxyz[3])	> 6×6 Matrix{C	ompl	lexF64}:		
eigen(Jz) > Ei	gen{ComplexF64, C	omplexF64, Matr	ix{ComplexF64	}, \	/ector{Com	<pre>iplexF64}</pre>	}
J2 = 2* sum([kro	on(Sxyz[n],Lxyz[n]) for n in 1:3]) 🚺 🕻 🕹 6 M	atri	ix{Complex	(F64}:	
eigen(J2).values	.+ 11/4	or{Float64} wit <mark>0…</mark>	h 6 elements				
	0.75	0					
	3.75						
	3.75						
	3.75						
	3.75						
							-
<pre>eigen(J2).vectors</pre>	∽6×6 Matrix{Comple	xF64}:					
	0.0+0.0im	0.0+0.0im	0.0+0.0im		1.0+0.0im	0.0+0.0im	
	0.57735+0.0im	0.0+0.0im	0.816497+0.0im		0.0+0.0im	0.0+0.0im	
	0.0+0.0im	-0.816497+0.0im	0.0+0.0im		0.0+0.0im	0.0+0.0im	
	-0.816497+0.0im	0.0+0.0im	0.57735+0.0im		0.0+0.0im	0.0+0.0im	
	0.0+0.0im	0.57735-0.0im	0.0+0.0im		0.0+0.0im	0.0+0.0im	
	0.0+0.0im	0.0+0.0im	0.0+0.0im		0.0+0.0im	1.0+0.0im	

求解类CG系数 求解 J^2, J_z 的共同本征态 ϕ : 空间运动用坐标表象描述, 自旋状态用 S_z 表象描述

 $ext{ECOC}: \ket{L^2,L_z,S^2,S_z}
ightarrow \ket{J^2,L^2,S^2,J_z}$

$$\langle heta, arphi | \phi
angle = \langle heta, arphi | l, m
angle \otimes | s, m_s
angle = c_1 Y_{lm_1} \ket{+} + c_2 Y_{lm_2} \ket{-}$$

$$egin{aligned} J^2 &= L^2 + S^2 + 2 \mathbf{L} \cdot \mathbf{S} \ &= l(l+1) \hbar^2 + rac{3}{4} \hbar^2 + 2(L_x \otimes S_x + L_y \otimes S_y + L_z \otimes S_z) \ &= l(l+1) \hbar^2 + rac{3}{4} \hbar^2 + \hbar egin{pmatrix} L_z & L_x - i L_y \ L_x + i L_y & -L_z \end{pmatrix} \end{aligned}$$

 $egin{aligned} &\langle heta, arphi | J^2 \, | \phi
angle = l(l+1) \hbar^2 + rac{3}{4} \hbar^2 \, \langle heta, arphi | \phi
angle + \hbar^2 iggin{pmatrix} [c_1 m_1 + c_2 \sqrt{(l-m_1)(l+m_1+1)}] Y_{lm_1} \ [c_1 \sqrt{(l-m_1)(l+m_1+1)} - c_2 m_2] Y_{lm_2} \end{pmatrix} \end{aligned}$