Tensor product of state spaces

Definition and properties

Tensor product space

$$
\varepsilon=\varepsilon_{1} \otimes \varepsilon_{2}
$$

if there is associated with each pair of vectors, $|\psi(1)\rangle \in \varepsilon_{1}$ and $|\psi(2)\rangle \in \varepsilon_{2}$, a vector of ε, denoted by $|\psi(1)\rangle \otimes|\psi(2)\rangle$.

1. It is linear with respect to multiplication by complex numbers.
2. It is distributive with respect to vector addition.
3. The set of basis $\left|u_{i}(1)\right\rangle \otimes\left|v_{l}(2)\right\rangle$ constitutes a basis in ε. The dimension of ε is $N_{1} N_{2}$.

$$
\begin{gathered}
\left\langle\varphi^{\prime}(1) \chi^{\prime}(2) \mid \varphi(1) \chi(2)\right\rangle=\left\langle\varphi^{\prime}(1) \mid \varphi(1)\right\rangle\left\langle\chi^{\prime}(2) \mid \chi(2)\right\rangle \\
\left\langle u_{i^{\prime}}(1) v_{l^{\prime}}(2) \mid u_{i}(1) v_{l}(2)\right\rangle=\left\langle u_{i^{\prime}}(1) \mid u_{i}(1)\right\rangle\left\langle v_{l^{\prime}}(2) \mid v_{l}(2)\right\rangle=\delta_{i i^{\prime}} \delta_{l l^{\prime}}
\end{gathered}
$$

Tensor product of operators

The extension of a linear operator $A(1)$ in ε :

$$
\tilde{A}(1)|\psi\rangle=\sum_{i, l} c_{i, l}\left[A(1)\left|u_{i}(1)\right\rangle\right] \otimes\left|v_{l}(2)\right\rangle
$$

It is easy to show that two operators such as $\tilde{A}(1)$ and $\tilde{B}(2)$ commute in ε.
The tensor product $A(1) \otimes B(2)$ is the linear operator in ε.

$$
[A(1) \otimes B(2)][|\psi(1)\rangle \otimes|\chi(2)\rangle]=[A(1)|\psi(1)\rangle] \otimes[B(2|\chi(2)\rangle)]
$$

Eigenvalue equations in the product space

Eigenvalue equation of $A(1)$

$$
A(1)\left|\varphi_{n}^{i}(1) \chi(2)\right\rangle=\left[A(1)\left|\varphi_{n}^{i}(1)\right\rangle\right] \otimes|\chi(2)\rangle=a_{n}\left|\varphi_{n}^{i}(1) \chi(2)\right\rangle
$$

If $A(1)$ is an observable in ε_{1}, the orthonormal system of vectors $\left|\psi_{n}^{i, l}\right\rangle$ is a basis in ε :

$$
\left|\psi_{n}^{i, l}\right\rangle=\left|\varphi_{n}^{i}(1)\right\rangle \otimes\left|v_{l}(2)\right\rangle
$$

Eigenvalue equation of $A(1)+B(2)$

$$
\begin{gathered}
C=A(1)+B(2) \\
C\left|\varphi_{n}(1) \chi_{p}(2)\right\rangle=\left(a_{n}+b_{p}\right)\left|\varphi_{n}(1) \chi_{p}(2)\right\rangle
\end{gathered}
$$

The eigenvalues of C are the sums of an eigenvalue of $A(1)$ and an eigenvalue of $B(2)$.
One can find a basis of eigenvectors of which are tensor products of an eigenvector of $A(1)$ and an eigenvector of $B(2)$.

Comment:

Equation (F-30) shows that the eigenvalues of C are all of the form $c_{n p}=a_{n}+b_{p}$. If two different pairs of values of n and p which give the same value for $c_{n p}$ do not exist, $c_{n p}$ is non-degenerate (recall that we have assumed a_{n} and b_{p} to be non-degenerate in \mathscr{E}_{1} and \mathscr{E}_{2} respectively). The corresponding eigenvector of C is necessarily the tensor product $\left|\varphi_{n}(1)\right\rangle\left|\chi_{p}(2)\right\rangle$. If, on the other hand, the eigenvalue $c_{n p}$ is, for example, twofold degenerate (there exist m and q such that $c_{m q}=c_{n p}$), all that can be asserted is that every eigenvector of C corresponding to this eigenvalue is written:

$$
\begin{equation*}
\lambda\left|\varphi_{n}(1)\right\rangle\left|\chi_{p}(2)\right\rangle+\mu\left|\varphi_{n}(1)\right\rangle\left|\chi_{p}(2)\right\rangle \tag{F-31}
\end{equation*}
$$

where λ and μ are arbitrary complex numbers. In this case, therefore, there exist eigenvectors of C which are not tensor products.

$$
C=\tilde{A}(1)+\tilde{B}(2)=A(1) \otimes \mathbb{I}(2)+\mathbb{I}(1) \otimes B(2)
$$

Complete sets of commuting observables in ε

By joining two sets of commuting observables which are complete in ε_{1} and ε_{2} respectively, one obtains a complete set of commuting observables in ε.

Applications

System of three spin $1 / 2$ particles

$$
\begin{gathered}
\varepsilon_{S}=\varepsilon_{S}(1) \otimes \varepsilon_{S}(2) \otimes \varepsilon_{S}(3) \\
\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}+\mathbf{S}_{3} \\
S_{z}=\tilde{S}_{1 z}+\tilde{S}_{2 z}+\tilde{S}_{3 z}, \quad \text { with } \\
\tilde{S}_{i z}\left|\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right\rangle=\frac{\hbar}{2} \varepsilon_{i}\left|\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right\rangle, \quad i=1,2,3
\end{gathered}
$$

eigenvalues : $3 / 2 \hbar, 1 / 2 \hbar \times 3,-1 / 2 \hbar \times 3,-3 / 2 \hbar$

```
u1 = [1,0]; u2 = [0,1] |> Vector{Int64} with 2 elements
Sz1 = 1/2 * [1 0 ; 0 -1] | > 2\times2 Matrix{Float64}:
Sz = kron(Sz1,I(2),I(2)) + kron(I(2),Sz1,I(2)) + kron(I(2),I(2),Sz1) | > 8*8
Sz * kron(u2,u2,u2) | > Vector{Float64} with 8 elements
eigen(Sz) | > Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
```

$$
\begin{gathered}
S^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}+2 \mathbf{S}_{1} \cdot \mathbf{S}_{2}+2 \mathbf{S}_{1} \cdot \mathbf{S}_{3}+2 \mathbf{S}_{2} \cdot \mathbf{S}_{3} \\
=\frac{9}{4} \hbar^{2}+2\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}+\mathbf{S}_{1} \cdot \mathbf{S}_{3}+\mathbf{S}_{2} \cdot \mathbf{S}_{3}\right) \\
S^{2}\left|\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right\rangle=\frac{9}{4} \hbar^{2}+\frac{\hbar^{2}}{2}\left(\sigma_{x}^{1} \sigma_{x}^{2}+\sigma_{y}^{1} \sigma_{y}^{2}+\sigma_{z}^{1} \sigma_{z}^{2}+\cdots\right)\left|\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right\rangle
\end{gathered}
$$

eigenvalues: $3 / 4 \hbar^{2} \times 4,15 / 4 \hbar^{2} \times 4$

ECOC : $\left\{S_{1 z}, S_{2 z}, S_{3 z}\right\} \rightarrow\left\{S^{2}, S_{z}\right\}$

eigen(Sz).vectors	$\checkmark 8 \times 8$ Matrix\{Float64\}:							
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

eigen(S2).vectors	$\checkmark 8 \times 8$ Matrix\{ComplexF64\}:				
	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	\ldots	$1.0+0.0 \mathrm{im}$
	$0.707107+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$-0.408248+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	
	$-0.707107+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$-0.408248+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	
	$0.0+0.0 \mathrm{im}$	$-0.707107+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	
	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$0.816497+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	
	$0.0+0.0 \mathrm{im}$	$0.707107+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	\ldots	$0.0+0.0 \mathrm{im}$
	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	
	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$	

Addition of an orbital angular momentum $l=1$ and a spin $1 / 2$

$$
\begin{gathered}
\varepsilon_{J}=\varepsilon_{L} \otimes \varepsilon_{S} \\
\mathbf{J}=\mathbf{L}+\mathbf{S} \\
J_{z}=\tilde{L}_{z}+\tilde{S}_{z} \\
J^{2}=L^{2}+S^{2}+2 \mathbf{L} \cdot \mathbf{S} \\
=l(l+1) \hbar^{2}+\frac{3}{4} \hbar^{2}+2\left(L_{x} \otimes S_{x}+L_{y} \otimes S_{y}+L_{z} \otimes S_{z}\right)
\end{gathered}
$$

Sxyz $=1 / 2 *\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]$ ，［0－1im ；1im 0］，［1 0 ；0－1］］｜\quad Vector\｛Matrix\｛Comp Lxyz $=1 / \sqrt{2} *\left[\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\right]$ 1im＊［0－1 0 ； $100-1$ ； 010$]$ ， $\sqrt{2} *[100 ; 000 ; 00-1]$ ］｜＞Vector\｛Matrix\} with 3 elements Jz $=\operatorname{kron}(\operatorname{Lxyz}[3], \mathrm{I}(2))+\operatorname{kron(I(3),Sxyz[3])~|>6\times 6~Matrix\{ ComplexF64\} :~}$ eigen（Jz）｜＞Eigen\｛ComplexF64，ComplexF64，Matrix\｛ComplexF64\}, Vector\{ComplexF64\}\} J2 $=2 *$ sum（［kron（Sxyz［n］，Lxyz［n］）for n in 1：3］）｜＞6×6 Matrix\｛ComplexF64\}:
eigen（J2）．values ．＋11／4
VVectorfFloat64\} with 6 elements
0．750．．．
0．750．．．
3.75
3.75
3.75
3.75

eigen（J2）．vectors	$\checkmark 6 \times 6$ Matrix\｛ComplexF64\}:					
	0．0＋0．0im	0．0＋0．0im	0．0＋0．0im	．．．	$1.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$
	$0.57735+0.0 \mathrm{im}$	0．0＋0．0im	$0.816497+0.0 \mathrm{im}$		$0.0+0.0 \mathrm{im}$	$0.0+0.01 \mathrm{~m}$
	$0.0+0.0 \mathrm{im}$	－0．816497＋0．0im	0．0＋0．0im		$0.0+0.0 \mathrm{im}$	0．0＋0．0im
	－0．816497＋0．0im	0．0＋0．0im	$0.57735+0.0 \mathrm{im}$		$0.0+0.0 \mathrm{im}$	$0.0+0.0 \mathrm{im}$
	$0.0+0.0 \mathrm{im}$	$0.57735-0.0 \mathrm{im}$	$0.0+0.01 \mathrm{~m}$		$0.0+0.01 \mathrm{~m}$	$0.0+0.0 \mathrm{im}$
	$0.0+0.0 \mathrm{im}$	0．0＋0．0im	$0.0+0.0 \mathrm{im}$	．．．	$0.0+0.0 \mathrm{im}$	$1.0+0.0 \mathrm{im}$

求解类CG系数 求解 J^{2}, J_{z} 的共同本征态 ϕ ：空间运动用坐标表象描述，自旋状态用 S_{z}表象描述

ECOC ：$\left|L^{2}, L_{z}, S^{2}, S_{z}\right\rangle \rightarrow\left|J^{2}, L^{2}, S^{2}, J_{z}\right\rangle$

$$
\begin{gathered}
\langle\theta, \varphi \mid \phi\rangle=\langle\theta, \varphi \mid l, m\rangle \otimes\left|s, m_{s}\right\rangle=c_{1} Y_{l m_{1}}|+\rangle+c_{2} Y_{l m_{2}}|-\rangle \\
J^{2}=L^{2}+S^{2}+2 \mathbf{L} \cdot \mathbf{S} \\
=l(l+1) \hbar^{2}+\frac{3}{4} \hbar^{2}+2\left(L_{x} \otimes S_{x}+L_{y} \otimes S_{y}+L_{z} \otimes S_{z}\right) \\
=l(l+1) \hbar^{2}+\frac{3}{4} \hbar^{2}+\hbar\left(\begin{array}{cc}
L_{z} & L_{x}-i L_{y} \\
L_{x}+i L_{y} & -L_{z}
\end{array}\right) \\
\langle\theta, \varphi| J^{2}|\phi\rangle=l(l+1) \hbar^{2}+\frac{3}{4} \hbar^{2}\langle\theta, \varphi \mid \phi\rangle+\hbar^{2}\binom{\left[c_{1} m_{1}+c_{2} \sqrt{\left(l-m_{1}\right)\left(l+m_{1}+1\right)}\right] Y_{l m_{1}}}{\left[c_{1} \sqrt{\left(l-m_{1}\right)\left(l+m_{1}+1\right)}-c_{2} m_{2}\right] Y_{l m_{2}}}
\end{gathered}
$$

