Quantum Computation: Density Operator

Open quantum systems

All real quantum systems are open.
\square
Interactions with the environment drive decoherence.

It can be controlled using quantum error correction \downarrow
We consider a closed "universe" consisting of a system and its environment.

Axioms

A state is a ray in Hilbert space.

$$
|\psi\rangle \equiv \lambda|\psi\rangle
$$

$$
a|\phi\rangle+b|\psi\rangle \not \equiv a|\phi\rangle+b e^{i \alpha}|\psi\rangle
$$

An observable is a self-adjoint operator on Hillbert space.

$$
A=\sum_{n} a_{n} E_{n} \quad E_{n}=E_{n}^{\dagger}
$$

Axioms

Probabilities of measurement outcomes are determined

 by the "Born rule".Post-measurement state:

$$
|\psi\rangle \rightarrow \frac{E_{n}|\psi\rangle}{\| E_{n}|\psi\rangle \|}
$$

Expectation value of the measurement outcome:

$$
\begin{aligned}
& \operatorname{Prob}\left(a_{n}\right)=\| E_{n}|\psi\rangle \|^{2}=\langle\psi| E_{n}|\psi\rangle \\
& \langle A\rangle=\sum_{n} a_{n} \operatorname{Prob}\left(a_{n}\right)=\langle\psi| A|\psi\rangle
\end{aligned}
$$

Axioms

Tïme evolution is determined by the Schroedinger equation.
Post-measurement state: $\quad \frac{d}{d t}|\psi(t)\rangle=-i H(t)|\psi(t)\rangle$
The evolution proceeds via a sequence of infinitesimal unitary operators:

$$
\psi(t+d t)\rangle=(I-i H(t) d t)|\psi(t)\rangle=e^{-i H(t) d t}|\psi(t)\rangle=U(t+d t, t)|\psi(t)\rangle
$$

- The Hilbert space of composite system $A B$ is the tensor product of A and B:

$$
\mathcal{H}_{A B}=\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}
$$

Qubit

$$
\operatorname{dim}(\mathcal{H})=2, \quad \mathcal{H}=\operatorname{span}\{|0\rangle,|1\rangle\}
$$

$$
\begin{aligned}
& I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& |\psi\rangle=a|0\rangle+b|1\rangle
\end{aligned}
$$

$\operatorname{Prob}(|0\rangle)=|a|^{2}, \quad \operatorname{Prob}(|1\rangle)=|b|^{2}, \quad|a|^{2}+|b|^{2}=1$

Qubit

$$
|\psi(\theta, \phi)\rangle=e^{-i \phi / 2} \cos (\theta / 2)|0\rangle+e^{i \phi / 2} \sin (\theta / 2)|1\rangle
$$

$$
\theta \in[0, \pi], \quad \phi \in[0,2 \pi)
$$

$\hat{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

$\hat{n} \cdot \vec{\sigma}=n_{1} \sigma_{1}+n_{2} \sigma_{2}+n_{3} \sigma_{3} \rightarrow \hat{n} \cdot \vec{\sigma}|\psi(\theta, \phi)\rangle=|\psi(\theta, \phi)\rangle$
$\left\langle\sigma_{1}\right\rangle=\sin \theta \cos \phi, \quad\left\langle\sigma_{2}\right\rangle=\sin \theta \sin \phi, \quad\left\langle\sigma_{3}\right\rangle=\cos \theta$

Quantum "Interference"

Open quantum systems

- States are not rays in Hilbert space.
- Measurements are not orthogonal projections.
- Evolution is not unitary.

Example:

$$
\begin{aligned}
&|\psi\rangle_{A B}=a|0\rangle_{A} \otimes|0\rangle_{B}+b|1\rangle_{A} \otimes|1\rangle_{B}=a|00\rangle+b|11\rangle \\
& A=M_{A} \otimes I_{B}|0\rangle_{A} \otimes|0\rangle_{B}, \quad \text { Prob }=|a|^{2}, \\
&|1\rangle_{A} \otimes|1\rangle_{B}, \quad \text { Prob }=|b|^{2} . \\
&{ }_{A B}\langle\psi| M_{A} \otimes I_{B}|\psi\rangle_{A B}=\left(a^{*}\langle 00|+b^{*}\langle 11|\right) M_{A} \otimes I_{B}(a|00\rangle+b|11\rangle) \\
&=|a|^{2}\langle 0| M_{A}|0\rangle+|b|^{2}\langle 1| M_{A}|1\rangle
\end{aligned}
$$

Open quantum systems

- States are not rays in Hilbert space.
- Measurements are not orthogonal projections.
- Evolution is not unitary.

Example:

$$
\begin{aligned}
& |\psi\rangle_{A B}=a|0\rangle_{A} \otimes|0\rangle_{B}+b|1\rangle_{A} \otimes|1\rangle_{B}=a|00\rangle+b|11\rangle \\
& { }_{A B}\langle\psi| M_{A} \otimes I_{B}|\psi\rangle_{A B}=\operatorname{tr}\left(M_{A} \rho_{A}\right) \\
& \rho_{A}=|a|^{2}|0\rangle\langle 0|+|b|^{2}|1\rangle\langle 1| \quad \text { Density operator }
\end{aligned}
$$

Open quantum systems

A more general state of AB :

$$
\begin{aligned}
& \begin{array}{l}
|\psi\rangle_{A B}=\sum_{i, \mu} a_{i \mu}|i\rangle_{A} \otimes|\mu\rangle_{B},\left.\quad \sum_{i, \mu} a_{i \mu}\right|^{2}=1 \\
{ }_{A B}\langle\psi| M_{A} \otimes I_{B}|\psi\rangle_{A B}
\end{array}=\sum_{j, v} a_{j v}^{*}\left({ }_{A}\langle j| \otimes_{B}\langle v|\right)\left(M_{A} \otimes I_{B}\right) \sum_{i, \mu} a_{i \mu}\left(|i\rangle_{A} \otimes|\mu\rangle_{B}\right) \\
& \\
& \quad=\sum_{i, j, \mu} a_{j \mu}^{*} a_{i \mu}\langle j| M_{A}|i\rangle
\end{aligned} \quad \begin{aligned}
& { }_{A B}\langle\psi| M_{A} \otimes I_{B}|\psi\rangle_{A B}=\operatorname{tr}\left(\rho_{A} M_{A}\right) \\
& \rho_{A}=\sum_{i, j, \mu} a_{j \mu}^{*} a_{i \mu \mu}|i\rangle\langle j| \equiv \operatorname{tr}_{B}(|\psi\rangle\langle\psi|)
\end{aligned}
$$

Properties of the density operator

- The density operator is Hermitian. The density operator is nonnegative.

$$
\begin{aligned}
& \rho=\rho^{\dagger} \\
& \langle\phi| \rho|\phi\rangle=\sum_{i, j, \mu} a_{j \mu}^{*} a_{i \mu}\langle\phi \mid i\rangle\langle j \mid \phi\rangle=\sum_{\mu}\left|\sum_{i} a_{i \mu\langle }\langle\phi \mid i\rangle\right|^{2} \geq 0 \\
& \left.\operatorname{tr} \rho=\sum a_{i \mu}{ }^{2}=\| \psi\right\rangle_{A B}^{2} \| 1
\end{aligned}
$$

An orthonormal basis

$$
\rho=\sum_{a} p_{a}|a\rangle\langle a|, \quad p_{a} \geq 0, \quad \sum_{a} p_{a}=1
$$

Schmidt decomposition of a bipartite pure state

$$
\begin{aligned}
& |\psi\rangle_{A B}=\sum a_{i \mu}|i\rangle_{A} \otimes|\mu\rangle_{B}, \text { andsuppose } \rho_{A}=\sum_{i} p_{i}|i\rangle\langle i| \\
& |\psi\rangle_{A B}=\sum|i\rangle_{A} \otimes|\tilde{i}\rangle_{B}, \text { where }|\tilde{i}\rangle=\sum_{\mu} a_{i \mu}|\mu\rangle_{B} \\
& \rho_{A}=\sum_{i} p_{i}|i\rangle\langle i|=\sum_{i, j}(|i\rangle\langle j|)_{A} \operatorname{tr}_{B}(|\tilde{i}\rangle\langle\tilde{j}|)=\sum_{i, j}(|i\rangle\langle j|)_{A}\langle\tilde{j} \mid \tilde{i}\rangle \\
& \left.\langle\tilde{j} \mid \tilde{i}\rangle=\delta_{i j} p_{i} \rightarrow\left|i^{\prime}\right\rangle_{B}=\frac{1}{\sqrt{p_{i}}}|\tilde{i}\rangle_{B} \quad\left(p_{i}\right\rangle 0\right) \\
& |\psi\rangle_{A B}=\sum_{i} \sqrt{p_{i}}|i\rangle_{A} \otimes\left|i^{\prime}\right\rangle_{B} \\
& \operatorname{tr}_{A}(|\psi\rangle\langle\psi|)=\sum_{i} p_{i}\left|i^{\prime}\right\rangle\left\langle i^{\prime}\right|
\end{aligned}
$$

Schmidt decomposition of a bipartite pure state

- The state is separable if and only if there is only one non-zero Schmidt coefficient;
- If more than one Schmidt coefficients are non-zero, then the state is entangled;
- If all the Schmidt coefficients are non-zero and equal, then the state is said to be maximally entangled.

The set of density operators is convex

$$
\rho(\lambda)=\lambda \rho_{1}+(1-\lambda) \rho_{2}, \quad 0 \leq \lambda \leq 1 .
$$

- Positive. $\langle\psi| \rho(\lambda)|\psi\rangle=\lambda\langle\psi| \rho_{1}|\psi\rangle+(1-\lambda)\langle\psi| \rho_{2}|\psi\rangle \geq 0$
- Hermitian.
- Has unit trace.
$\langle M\rangle=\lambda \operatorname{tr} \rho_{1} M+(1-\lambda) \operatorname{tr} \rho_{2} M=\operatorname{tr} \rho(\lambda) M$
$\rho=|\psi\rangle\langle\psi|=\lambda \rho_{1}+(1-\lambda) \rho_{2} \quad$ and $\left\langle\psi^{\perp} \mid \psi\right\rangle=0$. Then
$0=\left\langle\psi^{\perp}\right| \rho\left|\psi^{\perp}\right\rangle=\lambda\left\langle\psi^{\perp}\right| \rho_{1}\left|\psi^{\perp}\right\rangle+(1-\lambda)\left\langle\psi^{\perp}\right| \rho_{2}\left|\psi^{\perp}\right\rangle$
$\Rightarrow\left\langle\psi^{\perp}\right| \rho_{1}\left|\psi^{\perp}\right\rangle=0$ and $\left\langle\psi^{\perp}\right| \rho_{2}\left|\psi^{\perp}\right\rangle=0$.
$\rho_{1}, \rho_{2} \propto|\psi\rangle\langle\psi| \quad$ A pure state cannot be obtained as a mixture of
 two other states

Density operator of a qubit

$$
\begin{aligned}
& \rho(\vec{P})=\frac{1}{2}(I+\vec{P} \cdot \vec{\sigma})=\frac{1}{2}\left(\begin{array}{cc}
1+P_{3} & P_{1}-i P_{2} \\
P_{1}+i P_{2} & 1-P_{3}
\end{array}\right) \\
& I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$$
\operatorname{det} \rho(\vec{P})=\frac{1}{4}\left(1-\vec{P}^{2}\right) \geq 0 \Rightarrow|\vec{P}| \leq 1 . \quad \text { nonnegative }
$$

The Bloch Sphere

$$
\begin{aligned}
& \rho(\hat{n})=\frac{1}{2}(I+\hat{n} \cdot \vec{\sigma}) \\
& \rho(\vec{P})=\frac{1}{2}(I+\vec{P} \cdot \vec{\sigma}) \Rightarrow \operatorname{tr} \rho(\vec{P})(\hat{n} \cdot \sigma)=\hat{n} \cdot \vec{P}
\end{aligned}
$$

Density operator of a qubit

Every mixed state of a qubit =The convex combination of two pure states (in many ways)

A unique way to express (almost any) mixed state:

A convex combination of two mutually orthogonal pure states
(except the center of the ball)

