Reaction models in nuclear astrophysics

P. Descouvemont Université Libre de Bruxelles, Brussels, Belgium

- 1. Introduction
- 2. Reactions in astrophysics: general properties
- 3. Reaction models
- 4. Microcopic models
- 5. The R-matrix method
- 6. Conclusion

1. Introduction

Goal of nuclear astrophysics: understand the abundances of the elements

- H, ⁴He most abundant (~75%, ~25%)
- « Gap » between A=4 and A=12: no stable element with A=5 and 8
- Even-odd effects: nuclei with A even are more bound
- Iron peak (very stable)

Types of reactions: general definitions valid for all models

Туре	Example	Origin
Transfer	³ He(³ He,2p) α	Strong
Radiative capture	² H(p,γ) ³ He	Electromagnetic
Weak capture	$p+p \rightarrow d+e^+ + v$	Weak

2. Reactions in astrophysics: general properties

• Transfer: A+B \rightarrow C+D (σ_t , strong interaction, example: ³He(d,p)⁴He)

$$\sigma_{t,c \to c'}(E) = \frac{\pi}{k^2} \sum_{J\pi} \frac{2J+1}{(2I_1+1)(2I_2+1)} \left| U_{cc'}^{J\pi}(E) \right|^2$$

 $U_{cc'}^{J\pi}(E) =$ collision matrix (obtained from scattering theory \rightarrow various models) c, c' = entrance and exit channels

Compound nucleus, ex: ⁵Li

• Radiative capture : A+B \rightarrow C+ γ (σ_c , electromagnetic interaction, example: ¹²C(p, γ)¹³N)

$$\sigma_{C}^{J_{f}\pi_{f}}(E) \sim \sum_{\lambda} \sum_{J_{i}\pi_{i}} k_{\gamma}^{2\lambda+1} \left| < \Psi^{J_{f}\pi_{f}} \| \mathcal{M}_{\lambda} \| \Psi^{J_{i}\pi_{i}}(E) \right|^{2}$$

 $J_f \pi_f$ =final state of the compound nucleus C $\Psi^{J_i \pi_i}(E)$ =initial scattering state of the system (A+B) $\mathcal{M}_{\lambda\mu}$ =electromagnetic operator (electric or magnetic): $\mathcal{M}_{\lambda\mu} \sim e r^{\lambda} Y_{\lambda}^{\mu}(\Omega_r)$

Long wavelength approximation:

Wave number $k_{\gamma} = E_{\gamma}/\hbar c$, wavelength: $\lambda_{\gamma} = 2\pi/k_{\gamma}$ Typical value: $E_{\gamma} = 1 MeV$, $\lambda_{\gamma} \approx 1200$ fm >> typical dimensions of the system (R) $\rightarrow k_{\gamma}R \ll 1$ = Long wavelength approximation

$$\sigma_{C}^{J_{f}\pi_{f}}(E) \sim \sum_{J_{i}\pi_{i}} \sum_{\lambda} k_{\gamma}^{2\lambda+1} \left| < \Psi^{J_{f}\pi_{f}} \| \mathcal{M}_{\lambda} \| \Psi^{J_{i}\pi_{i}}(E) > \right|^{2}$$

•
$$k_{\gamma} = (E - E_f)/\hbar c$$
 = photon wave number

- In practice
 - Summation over λ limited to 1 term (often E1, or E2/M1 if E1 is forbidden)

 $\frac{E2}{E1} \sim (k_{\gamma}R) \ll 1$ (from the long wavelength approximation)

 \circ Summation over $J_i \pi_i$ limited by selection rules

$$\left|J_i - J_f\right| \le \lambda \le J_i + J_f$$

$$\pi_i \pi_f = (-1)^{\lambda}$$
 for electric, $\pi_i \pi_f = (-1)^{\lambda+1}$ for magnetic

2. Reactions in astrophysics: general properties

• Weak capture : tiny cross section \rightarrow no measurement (only calc.)

$$\sigma_W^{J_f \pi_f}(E) \sim \sum_{J_i \pi_i} \left| < \Psi^{J_f \pi_f} \left\| \mathcal{O}_\beta \right\| \Psi^{J_i \pi_i}(E) > \right|^2$$

- Calculations similar to radiative capture
- O_{β} = Fermi ($\sum_{i} t_{i\pm}$) and Gamow-Teller ($\sum_{i} t_{i\pm} \sigma_{i}$) operators
- Examples: $p+p \rightarrow d+v+e^+$: first reaction in H burning (pp chain) ³He+p \rightarrow ⁴He+v+e⁺: produces high-energy neutrinos

- Fusion: similar to transfer, but with many output channels
 - \rightarrow statistical treatment
 - \rightarrow optical potentials

Examples: ¹²C+¹²C, ¹⁶O+¹⁶O, etc.

General properties

Scattering energy E: wave function $\Psi_i(E)$

common to all processes

Reaction threshold

- Cross sections dominated by Coulomb effects Sommerfeld parameter $\eta = Z_1 Z_2 e^2 / \hbar v$
 - Coulomb functions at low energies $F_{\ell}(\eta, x) \rightarrow \exp(-\pi\eta) \mathcal{F}_{\ell}(x),$ $G_{\ell}(\eta, x) \rightarrow \exp(\pi\eta) \mathcal{G}_{\ell}(x),$
- Coulomb effect: strong *E* dependence : $\exp(-2\pi\eta)$ neutrons: $\sigma(E) \sim 1/v$

Strong ℓ dependence Centrifugal term: $\sim \frac{\hbar^2}{2\mu} \frac{\ell(\ell+1)}{r^2}$ \rightarrow stronger for nucleons ($\mu \approx 1$) than for α ($\mu \approx 4$)

General properties: specificities of the entrance channel \rightarrow common to all reactions

- All cross sections (capture, transfer) involve a summation over ℓ : $\sigma(E) = \sum_{\ell} \sigma_{\ell}(E)$
- The partial cross sections $\sigma_{\ell}(E)$ are proportional to the penetration factor

$$P_{\ell}(E) = \frac{ka}{F_{\ell}(ka)^2 + G_{\ell}(ka)^2}$$
 (a =typical radius)

Astrophysical S factor: $S(E) = \sigma(E)E\exp(2\pi\eta)$ (Units: E*L²: MeV-barn)

- removes the coulomb dependence \rightarrow only nuclear effects
- weakly depends on energy $\rightarrow \sigma(E) \approx S_0 \exp(-2\pi\eta) / E$ (any reaction at low E)

Example 1: ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be reaction}$

- Cross section σ(E) Strongly depends on energy
- Logarithmic scale

S factor

- Coulomb effects removed
- Weak energy dependence
- Linear scale

Example 2: ¹²C(p, γ)¹³N reaction

- Resonance $1/2^+$: $\ell = 0$
- Resonances $3/2^{-}$, $5/2^{+} \ell = 1, 2 \rightarrow$ negligible

Note: BW is an approximation

- Neglects background, external capture
- Assumes an isolated resonance
- Is more accurate near the resonance energy

- Nucleosynthesis:
 - Primordial (Bigbang): 3 first minutes of the Universe
 - Stellar: star evolution, energy production
- Input required: reaction rate <σv>
 - strongly depend on temperatures
 - given by the low-energy part of the cross section $\sigma(E)$ (Gamow window)

- Astrophysical energies: much lower than the Coulomb barrier
 - ightarrow Coulomb effects are dominant
 - ightarrow Very small cross sections

General problems in nuclear astrophysics

- Low energies \rightarrow very low cross sections (Coulomb barrier)
- For heavy nuclei: high level densities → many resonances must be known
- Need for radioactive beams
- No systematics (many different types of reactions)
 - transfer, capture
 - resonant, non-resonant
 - low or high level densities

➔ in most cases a theoretical support is necessary

- data extrapolation (example: R-matrix method) Available cross sections are parametrized, and extrapolated down to stellar energies
- determination of cross sections
 The cross sections are determined from the wave functions of the system
 No need for experimental data (in principle!)
 Examples: potential model, microscopic models (low level densities)
 shell model (resonance properties in for high level densities)

14

Applications: standard techniques applied to nucleus-nucleus scattering Theoretical point of view: compute the cross sections Experimental point of view: fit the data and extrapolate them to low energies

Microscopic « ab intio » models AMD, FMD, NCSM

 $H = \sum_{i} T_i + \sum_{j>i} V_{ij} + \cdots$

 V_{ij} =realistic nucleon-nucleon interaction

Internal structure is neglected

Advantage:

© Simple

Limitations:

- $\ensuremath{\mathfrak{S}}$ Not applicable to transfer reactions
- $\ensuremath{\mathfrak{S}}$ Choice of the potential?

 $\ensuremath{\mathfrak{S}}$ Not applicable if reaction channels are open

Microscopic models

- Pauli principle taken into account
- Depend on a nucleon-nucleon (NN) interaction \rightarrow more predictive power

$$H_0(r_1, \dots r_A) = \sum_i T_i + \sum_{ij} V_{ij}$$

• Two approaches: « *ab initio* », cluster models

« Ab initio » (Nocluster approximation)

- Try to find an exact solution of the (A-body) Schrödinger equation
- Use realistic NN interactions (fitted on NN properties)
- In general:
 - *A* ≤ 12
 - Scattering states difficult/impossible to obtain
 - Not well adapted to halo structure, resonant states

Example 1: T. Neff, Phys. Rev. Lett. 106, 042502

³He(α,γ)⁷Be

- Many experiment, many calculations
- First RGM calculation (1981) Liu et al.
- Low energies: external capture
- ERNA data (2007): different for E>1.5 MeV

3 H(α , γ)⁷Li

- Mirror reaction
- Overestimates recent data

Example 2: d+d systems ${}^{2}H(d,\gamma){}^{4}He$, ${}^{2}H(d,p){}^{3}H$, ${}^{2}H(d,n){}^{3}He$ two physics issues

- Analysis of the d+d S factors (Big-Bang nucleosynthesis)
- Role of the tensor force in ²H(d,γ)⁴He
- ²H(d, γ)⁴He S factor
 - Ground state of ⁴He=0⁺
 - E1 forbidden \rightarrow main multipole is E2 \rightarrow 2⁺ to 0⁺ transition \rightarrow d wave as initial state
 - Experiment shows a plateau below 0.1 MeV: typical of an s wave

Collaboration Niigata (K. Arai, S. Aoyama, Y. Suzuki)-Brussels (D. Baye, P.D.) K. Arai et al., *Phys. Rev. Lett.* 107 (2011) 132502

3 nucleon-nucleon interactions:

- Realistic: Argonne AV8', G3RS
- Effective: Minnesota MN

- No parameter
- MN does not reproduce the plateau (no tensor force)
- D wave component in ⁴He: 13.8% (AV8')
 - 11.2% (G3RS)

Transfer reactions ²H(d,p)³H, ²H(d,n)³He

Cluster approximation

- Wave function defined by
- $\Psi = \mathcal{A}\Phi_1\Phi_2g(r)$ (Φ_1, Φ_2 =internal wave functions (shell-model)) =Resonating Group Method (RGM)
- Effective NN interactions (Minnesota, Volkov)
- Extensions to 3 clusters, 4 clusters, etc.
- Core excitations can be easily included
- Scattering states possible
- Calculations easier than in ab initio theories
 →Many applications (up to Ne isotopes) in spectroscopy and scattering
- Textbook example: $\alpha + \alpha$
- First application in astrophysics: ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

Application to $^{7}Be(p,\gamma)^{8}B$

- Introduced by Wigner (1937) to parametrize resonances (nuclear physics) In nuclear astrophysics: used to fit data
- Provides scattering properties at all energies (not only at resonances)
- Based on the existence of 2 regions (radius a):
 - Internal: coulomb+nuclear
 - external: coulomb

Exit channels

Main Goal: fit of experimental data

¹⁸Ne+p elastic scattering \rightarrow resonance properties

Nuclear astrophysics: ${}^{12}C(\alpha,\gamma){}^{16}O$ (E2) → Extrapolation to low energies

• Internal region: The R matrix is given by a set of resonance parameters (=poles) E_i , γ_i^2

$$R(E) = \sum_{i} \frac{\gamma_{i}^{2}}{E_{i}-E} = a \frac{\Psi'(a)}{\Psi(a)}$$

i=3, E₃, γ_{3}^{2}
i=2, E₂, γ_{2}^{2}
i=1, E₁, γ_{1}^{2}

• External region: Coulomb behaviour of the wave function $\Psi(r) = I(r) - UO(r)$

 \rightarrow the collision matrix U is deduced from the R-matrix (repeated for each spin/parity $J\pi$)

- Two types of applications:
 - **phenomenological R matrix**: γ_i^2 and E_i are fitted to the data (astrophysics)
 - calculable R matrix: γ_i^2 and E_i are computed from basis functions (scattering theory)
- R-matrix radius *a* is not a parameter: the cross sections must be insensitive to *a*
- Can be extended to multichannel calculations (transfer), capture, etc.
- Well adapted to nuclear astrophysics: low energies, low level densities

Different processes with common parameters \rightarrow constraints

- Phase shifts related to $\sum_{i} \frac{\gamma_i^2}{E_i E}$
- Capture cross section related to $\sum_{i} \frac{\gamma_i \sqrt{\Gamma_{\gamma,i}}}{E_i E}$
- Transfer cross section related to $\sum_{i} \frac{\gamma_{1i} \gamma_{2i}}{E_i E}$
- Beta decay to the continuum related to $\sum_{i} \frac{\gamma_i A_i}{E_i E}$

 E_i, γ_i : energies and reduced widths: common to all processes $\Gamma_{\gamma,i}, \gamma_{2i}, A_i$: specific to the individual processes

Example: simultaneous fit of

- $\,^{\rm 12}{\rm C}{\mbox{+}}\alpha$ phase shift
- ${}^{12}C(\alpha,\gamma){}^{16}O$ *S*-factor (E1)
- $^{\rm 16}{\rm N}~\beta\text{-decay}$

(Azuma et al, Phys. Rev. C50 (1994) 1194)

parameters of the 1_1^{-1} and 1_2^{-1} states (+background):

- ¹²C+α: E_{λ} , γ_{λ}
- ${}^{12}C(\alpha,\gamma){}^{16}O : E_{\lambda}, \gamma_{\lambda}, \Gamma_{\gamma,\lambda}$ (radiative width)
- 16 N β decay : $E_{\lambda},\,\gamma_{\lambda},\,A_{\lambda}$ (β probabilities)

 \Rightarrow Constraints on common parameters E_{λ} , γ_{λ}

S(300 keV): extrapolations for E1

Review paper: R. deBoer et al., Rev. Mod. Phys. 89 (2017) 035007

6. Conclusion

6. Conclusion

Needs for nuclear astrophysics:

- low energy cross sections
- resonance parameters

Theory: various techniques

- fitting procedures (R matrix) \rightarrow extrapolation: importance of external constraints
- non-microscopic models: potential, DWBA, etc.
- microscopic models:
 - cluster: developed since 1960's, applied to NA since 1980's
 - \succ ab initio: problems with scattering states, resonances \rightarrow limited at the moment
- Indirect methods (resonance and bound-state) properties: many experiments
- (Some) current challenges: triple α process, ${}^{12}C(\alpha,\gamma){}^{16}O$, ${}^{12}C+{}^{12}C$, etc. s-process: many reactions