

用现实核力求解np束缚态

验证程序的自洽性

计算T+V的期望值并于束缚能比较来验证程序的自洽性

- $\langle \phi | V + T | \phi \rangle$ $\phi(p)$ 为束缚态波函数
- $= \langle \phi \,|\, T \,|\, \phi \rangle + \langle \phi \,|\, V \,|\, \phi \rangle$

$$= \sum_{\alpha} \int_{0}^{\infty} \langle \phi | k\alpha \rangle \frac{k^{2}}{2\mu} \langle k\alpha | \phi \rangle k^{2} dk$$

 $+\sum_{\alpha\alpha'}\int_{0}^{\infty}k^{2}k'^{2}\langle\phi|k\alpha\rangle\langle k\alpha|V|k'\alpha'\rangle\langle k'\alpha'|\phi\rangle dkdk'$

角动量耦合

 $|\alpha\rangle = |l(s_n s_p) s_{np}; j\rangle$ j是好量子数

NNDC可查

Ground and isomeric state information for ${}_{1}^{2}$ H

E(level) (MeV)	Jп	Δ(MeV)	T _{1/2}	Abundance	Decay Modes
0.0	1+	13.1357	STABLE	0.0115% <i>70</i>	

相对应的就是
$$j = 1, l = 0,2$$

因此

 $|\alpha_1\rangle = |0 \ (0.5 \ 0.5)1.0 \ ; \ 1.0\rangle$ - s-wave

 $|\alpha_2\rangle = |2 \ (0.5 \ 0.5)1.0 \ ; \ 1.0\rangle$ - d-wave

求解现实核力下的np束缚态

 $\langle k\alpha | \phi \rangle = \frac{1}{E - \frac{k^2}{2u}} \sum_{\alpha'} \int_0^\infty V(k\alpha, k'\alpha') \langle k'\alpha' | \phi \rangle k'^2 dk'$

积分运算在数值运算中为求和运算

 $\phi(k_i\alpha) = \sum_{j\alpha'} \left(k_j^2 \omega_j \frac{1}{E - \frac{k_i^2}{2\mu}} V_l(k_i\alpha, k_j\alpha') \phi(k_j\alpha') \right)$ $\begin{pmatrix} \phi_0 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} A_{00} & A_{02} \\ A_{20} & A_{22} \end{pmatrix} \begin{pmatrix} \phi_0 \\ \phi_2 \end{pmatrix}$

Krylov子空间方法简化矩阵

数值计算牵征值问题中,计算速度与矩阵大小相关,矩阵越大求解速度越慢 $K(E) | \phi \rangle = \lambda(E) | \phi \rangle$ 对于 我们假设牵征态可以由一组正交基展开 $\left|\phi\right\rangle = \sum_{i}^{\mathcal{N}} c_{i} \left|\bar{\varphi}_{i}\right\rangle$ i=0把上式代入牵征值问题,可得 $\sum_{i=0}^{N} \left\langle \bar{\varphi}_{i} | K | \bar{\varphi}_{j} \right\rangle c_{j} = \lambda(E)c_{i}$ $\sum_{ij}^{N} B_{ij}c_j = \lambda(E)c_i$ 即 $B_{ij} = \left\langle \bar{\varphi}_i | K | \bar{\varphi}_j \right\rangle$

建立Krylov子空间正交基

(a) Choose a normalized starting vector $|\bar{\varphi}_0\rangle$ and apply the kernel to generate the state $|\varphi_1\rangle$.

$$|\varphi_1\rangle = K |\bar{\varphi}_0\rangle$$
 (1.8)

(b) Orthogonalize and normalize the state $|\varphi_1\rangle$ with respect to the state $|\varphi_0\rangle$.

$$|\tilde{\varphi}_1\rangle = |\varphi_1\rangle - |\bar{\varphi}_0\rangle\langle\bar{\varphi}_0|\varphi_1\rangle, \qquad (1.9)$$

and

$$|\bar{\varphi}_1\rangle = \frac{|\tilde{\varphi}_1\rangle}{\|\tilde{\varphi}_1\|}.$$
(1.10)

(c) Repeat steps (a) and (b) (i + 1)-times to generate $|\varphi_{i+1}\rangle$. Orthogonalize with respect to **all** vectors $\{|\bar{\varphi}_i\rangle, |\bar{\varphi}_{i-2}\rangle, ..., |\bar{\varphi}_0\rangle\}$ and normalize.

$$|\tilde{\varphi}_{i+1}\rangle = |\varphi_{i+1}\rangle - \sum_{n=1}^{i} |\bar{\varphi}_n\rangle \langle \bar{\varphi}_n |\varphi_{i+1}\rangle.$$
(1.11)

and

$$|\bar{\varphi}_{i+1}\rangle = \frac{|\tilde{\varphi}_{i+1}\rangle}{\|\tilde{\varphi}_{i+1}\|}.$$
(1.12)

建立Krylov子空间正交基

(d) Compute the matrix elements B_{ij} :

$$\begin{aligned} \hat{c}_{ij} &= 0 & \text{for } i > j+1 \\ &= \|\tilde{\varphi}_{j+1}\| & \text{for } i = j+1 \\ &= \langle \bar{\varphi}_i | \varphi_{j+1} \rangle & \text{for } i < j+1. \end{aligned}$$
(1.13)

(e) Use linear algebra techniques to obtain the eigenstates and eigenvalues of B, e.g. dgeev.f from LAPACK.

$$B \cdot c = \lambda \cdot c$$

(1.14)

- 1. Choose a normalized starting vector $|\bar{\varphi}_0\rangle$ and a starting energy E_0 .
- 2. Set the basis size $\mathcal{N} = 1$ and apply steps (a) to (e) and store the eigenvalue λ_1
- 3. Increase the basis size \mathcal{N} by one and repeat steps (a) and (e). Iterate until the eigenvalues λ_n reach a constant value (upto a chosen precision, e.g., $|\lambda_n \lambda_{n-1}| < 1e 6$).
- 4. Choose the eigenstates corresponding to the eigenvalue closest to one and compute the wavefunction $|\phi\rangle$ from Eq. (1.5).
- 5. Change to a new energy E_1 and set $|\bar{\varphi}_0\rangle = |\phi\rangle$. Here a search routine, e.g. Newton-Raphson Secant, should be used to determine the value of the new energy E_1 .
- 6. Repeat steps 2-4 until the variation in the energy falls below a chosen tolerance, e.g., $|E_n E_{n-1}| < 1e 6$

程序说明

光编译NNpotentiale文件卖下的程序来获得现实核力

! list	of potnr	implem	ented here
!	potnr=3	=>	Nijm93
!	potnr=7	=>	Nijm I
1	potnr=8	=>	Nijm II
!	potnr=11	=>	AV18 (needs input file!)
!	potnr=12	=>	<pre>separable (needs input file!) (for testing)</pre>
!	potnr=31	=>	CDB 2000
!	potnr=63	=>	Idaho N3LO
!	potnr=67	=>	Idaho N3LO 600

#define POTNR 31 这取现实核力的类型

计算A矩阵

166	<u> </u>
167	<u></u>
168	<u></u>
169	cccccccccccccccccccccccccccccccccccccc
170	<u> </u>
171	<u></u>
172	<u> </u>
173	

程序说明

计算D波的概率 $|\Phi\rangle = |\phi_0\rangle + |\phi_2\rangle$ $D\% = \langle \phi_2 | \Phi \rangle$

86	c calculate d-state probability
87	ددددددددددددددددددددددددددددددددددددد
88	ccccccccccccccccccccccccccccccccccccc
89	ددددددددددددددددددددددددددددددددددددد
90	

计算 $\langle \Phi | V + T | \Phi \rangle$

程序说明

挑战:使用Krylov子空间方法简化矩阵求解牵征值问题

