
用现实核力求解np束缚态



验证程序的自洽性
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计算T+V的期望值并于束缚能比较来验证程序的自洽性

⟨ϕ |V + T |ϕ⟩ 为束缚态波函数ϕ(p)

= ⟨ϕ |T |ϕ⟩ + ⟨ϕ |V |ϕ⟩

= ∑
α

∫
∞

0
⟨ϕ |kα⟩

k2

2μ
⟨kα |ϕ⟩k2dk

+∑
αα′ 

∫
∞

0
k2k′ 2⟨ϕ |kα⟩⟨kα |V |k′ α′ ⟩⟨k′ α′ |ϕ⟩dkdk′ 



角动量耦合
3

|α⟩ = | l(snsp)snp; j⟩ 是好量子数j l
sn

sp
j

NNDC可查

相对应的就是j = 1, l = 0,2
因此

|α1⟩ = |0 (0.5 0.5)1.0 ; 1.0⟩ s-wave

|α2⟩ = |2 (0.5 0.5)1.0 ; 1.0⟩ d-wave



求解现实核力下的np束缚态
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⟨kα |ϕ⟩ =
1

E − k2

2μ
∑

α′ 

∫
∞

0
V(kα, k′ α′ )⟨k′ α′ |ϕ⟩k′ 2 dk′ 

积分运算在数值运算中为求和运算

ϕ(kiα) = ∑
jα′ 

k2
j ωj

1

E −
k2

i

2μ

Vl(kiα, kjα′ )ϕ(kjα′ )

Aij

(ϕ0

ϕ2) = (A00 A02

A20 A22) (ϕ0

ϕ2)



Krylov子空间方法简化矩阵
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数值计算本征值问题中，计算速度与矩阵大小相关，矩阵越大求解速度越慢

对于 K(E) |ϕ⟩ = λ(E) |ϕ⟩

我们假设本征态可以由一组正交基展开

|ϕ⟩ =
𝒩

∑
i=0

ci φ̄i⟩

把上式代入本征值问题，可得

𝒩

∑
j=0

⟨φ̄i |K | φ̄j⟩ cj = λ(E)ci

即 𝒩

∑
j=0

Bijcj = λ(E)ci Bij = ⟨φ̄i |K | φ̄j⟩
N一般比较小



建立Krylov子空间正交基
6

For a practical solution the eigenvalue equation

K(E)|�i = �(E)|�i, (1.4)

is introduced. For the bound state energy E = �Eb, one of the eigenvalues is �n(E) = 1 and
Eq. (1.4) coincides with the Eq. (1.1). The Faddeev amplitude is then given by |�ni = | i.
Equation (1.4) may be solved directly using standard matrix diagonalization techniques.
However, this may not be feasible for very large values ofN . For such cases indirect methods
must be employed.

Let us assume that the eigenstates |�i of the kernel are expanded in a basis of orthonor-
malized vectors {'̄i}

|�i =
NX

i=0

ci|'̄ii. (1.5)

Substituting Eq. (1.5) into Eq. (1.4) leads to the eigenvalue equation

NX

j=0

h'̄i|K|'̄ji cj = �(E) ci,

NX

j=0

Bij cj = �(E) ci, (1.6)

where

Bij = h'̄i|K|'̄ji (1.7)

are matrix elements of the kernel in the basis defined by the vectors |'̄ii. The idea of
introducing the new basis is to obtain a matrix Bi,j which is significantly smaller than the
original kernel, i.e. N >> N , so that Bij can be diagonalized with standard linear algebra
techniques.

This method of iterated orthonormalized vectors relies on fact that a repeated application
of the kernel to an arbitrary vector |'̄0i projects out eigenvectors with small eigenvalues.
Since the kernel K is a compact operator, it has an accumulation of eigenvalues close to
zero so that there are only a few large eigenvalues. This implies that only a few basis states
are necessary to to represent K in a basis of vectors generated by its repeated application
to an arbitrary |'̄0i. The steps for the numerical implementation of the scheme are:

(a) Choose a normalized starting vector |'̄0i and apply the kernel to generate the state
|'1i.

|'1i = K|'̄0i (1.8)

(b) Orthogonalize and normalize the state |'1i with respect to the state |'0i.

|'̃1i = |'1i � |'̄0ih'̄0|'1i, (1.9)

5and

|'̄1i =
|'̃1i

k'̃1k
. (1.10)

(c) Repeat steps (a) and (b) (i + 1)-times to generate |'i+1i. Orthogonalize with respect
to all vectors {|'̄ii, |'̄i�2i, ..., |'̄0i} and normalize.

|'̃i+1i = |'i+1i �

iX

n=1

|'̄nih'̄n|'i+1i. (1.11)

and

|'̄i+1i =
|'̃i+1i

k'̃i+1k
. (1.12)

(d) Compute the matrix elements Bij:

Bij = 0 for i > j + 1
= k'̃j+1k for i = j + 1
= h'̄i|'j+1i for i < j + 1. (1.13)

(e) Use linear algebra techniques to obtain the eigenstates and eigenvalues of B, e.g. dgeev.f
from LAPACK.

B · c = � · c (1.14)

The algorithm for finding the bound state energy using this scheme is described below:

1. Choose a normalized starting vector |'̄0i and a starting energy E0.

2. Set the basis size N = 1 and apply steps (a) to (e) and store the eigenvalue �1

3. Increase the basis sizeN by one and repeat steps (a) and (e). Iterate until the eigenvalues
�n reach a constant value (upto a chosen precision, e.g., |�n � �n�1| < 1e� 6).

4. Choose the eigenstates corresponding to the eigenvalue closest to one and compute the
wavefunction |�i from Eq. (1.5).

5. Change to a new energy E1 and set |'̄0i = |�i. Here a search routine, e.g. Newton-
Raphson Secant, should be used to determine the value of the new energy E1.

6. Repeat steps 2-4 until the variation in the energy falls below a chosen tolerance, e.g.,
|En � En�1| < 1e� 6

6
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|ϕ⟩ =
𝒩

∑
i=0

ci φ̄i⟩



程序说明
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先编译NNpotentiale文件夹下的程序来获得现实核力

选取现实核力的类型

计算A矩阵



程序说明
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计算D波的概率 |Φ⟩ = |ϕ0⟩ + |ϕ2⟩

D % = ⟨ϕ2 |Φ⟩

计算⟨Φ |V + T |Φ⟩



程序说明
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挑战：使用Krylov子空间方法简化矩阵求解本征值问题


