用现实核力求解np束愽态

验证程序的自给性

计算T＋V的期望值并于束愽能比较来验证程序的自洽性
$\langle\phi| V+T|\phi\rangle \quad \phi(p)$ 为束愽态波函数
$=\langle\phi| T|\phi\rangle+\langle\phi| V|\phi\rangle$
$=\sum_{\alpha} \int_{0}^{\infty}\langle\phi \mid k \alpha\rangle \frac{k^{2}}{2 \mu}\langle k \alpha \mid \phi\rangle k^{2} d k$
$+\sum_{\alpha \alpha^{\prime}} \int_{0}^{\infty} k^{2} k^{2}\langle\phi \mid k \alpha\rangle\langle k \alpha| V\left|k^{\prime} \alpha^{\prime}\right\rangle\left\langle k^{\prime} \alpha^{\prime} \mid \phi\right\rangle d k d k^{\prime}$

角动量耦合

$|\alpha\rangle=\left|l\left(s_{n} s_{p}\right) s_{n p} ; j\right\rangle \quad j$ 是好量多数

NNDC可查

Ground and isomeric state information for ${ }_{1}^{2} \mathbf{H}$

E （level）（MeV）	$\mathrm{J} п$	$\Delta(\mathrm{MeV})$	$\mathrm{T}_{1 / 2}$	Abundance	Decay Modes
0.0	$1+$	13.1357	STABLE	$0.0115 \% 70$	

相对应的就是 $j=1, l=0,2$因此
$\left|\alpha_{1}\right\rangle=|0(0.50 .5) 1.0 ; 1.0\rangle \longleftarrow s$－wave
$\left|\alpha_{2}\right\rangle=|2(0.50 .5) 1.0 ; 1.0\rangle \longleftarrow d$－wave

求解现实核力下的np束愽态

$$
\langle k \alpha \mid \phi\rangle=\frac{1}{E-\frac{k^{2}}{2 \mu}} \sum_{\alpha^{\prime}} \int_{0}^{\infty} V\left(k \alpha, k^{\prime} \alpha^{\prime}\right)\left\langle k^{\prime} \alpha^{\prime} \mid \phi\right\rangle k^{2} d k^{\prime}
$$

积分运算在数值运算中为求和运算

$$
\begin{gathered}
\phi\left(k_{i} \alpha\right)=\sum_{j \alpha^{\prime}} k_{j}^{2} \omega_{j} \frac{1}{E-\frac{k_{i}^{k_{2}}}{2 \mu}} V_{l}\left(k_{i} \alpha, k_{j} \alpha^{\prime}\right) \phi\left(k_{j} \alpha^{\prime}\right) \\
A_{i j} \\
\binom{\phi_{0}}{\phi_{2}}=\left(\begin{array}{ll}
A_{00} & A_{02} \\
A_{20} & A_{22}
\end{array}\right)\binom{\phi_{0}}{\phi_{2}}
\end{gathered}
$$

Krylov 子空间方法简化矩阵

数值计算本征值问题中，计算速度与矩阵大小相关，矩阵越大求解速度越慢对于

$$
K(E)|\phi\rangle=\lambda(E)|\phi\rangle
$$

我们假设牵征态可以由一组正交基展开

$$
|\phi\rangle=\sum_{i=0}^{\mathcal{N}} c_{i}\left|\bar{\varphi}_{i}\right\rangle
$$

把上式代入枓征值问题，可得

$$
\sum_{j=0}^{\mathcal{N}}\left\langle\bar{\varphi}_{i}\right| K\left|\bar{\varphi}_{j}\right\rangle c_{j}=\lambda(E) c_{i}
$$

即

$$
\sum_{j=0}^{\wedge} B_{i j} c_{j}=\lambda(E) c_{i}
$$

$$
B_{i j}=\left\langle\bar{\varphi}_{i}\right| K\left|\bar{\varphi}_{j}\right\rangle
$$

建立Krylov尔空间正交基

（a）Choose a normalized starting vector $\left|\bar{\varphi}_{0}\right\rangle$ and apply the kernel to generate the state $\left|\varphi_{1}\right\rangle$ ．

$$
\begin{equation*}
\left|\varphi_{1}\right\rangle=K\left|\bar{\varphi}_{0}\right\rangle \tag{1.8}
\end{equation*}
$$

（b）Orthogonalize and normalize the state $\left|\varphi_{1}\right\rangle$ with respect to the state $\left|\varphi_{0}\right\rangle$ ．

$$
\begin{equation*}
\left|\tilde{\varphi}_{1}\right\rangle=\left|\varphi_{1}\right\rangle-\left|\bar{\varphi}_{0}\right\rangle\left\langle\bar{\varphi}_{0} \mid \varphi_{1}\right\rangle, \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\bar{\varphi}_{1}\right\rangle=\frac{\left|\tilde{\varphi}_{1}\right\rangle}{\left\|\tilde{\varphi}_{1}\right\|} . \tag{1.10}
\end{equation*}
$$

（c）Repeat steps（a）and（b）$(i+1)$－times to generate $\left|\varphi_{i+1}\right\rangle$ ．Orthogonalize with respect to all vectors $\left\{\left|\bar{\varphi}_{i}\right\rangle,\left|\bar{\varphi}_{i-2}\right\rangle, \ldots,\left|\bar{\varphi}_{0}\right\rangle\right\}$ and normalize．

$$
\begin{equation*}
\left|\tilde{\varphi}_{i+1}\right\rangle=\left|\varphi_{i+1}\right\rangle-\sum_{n=1}^{i}\left|\bar{\varphi}_{n}\right\rangle\left\langle\bar{\varphi}_{n} \mid \varphi_{i+1}\right\rangle . \tag{1.1.}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\bar{\varphi}_{i+1}\right\rangle=\frac{\left|\tilde{\varphi}_{i+1}\right\rangle}{\left\|\tilde{\varphi}_{i+1}\right\|} \tag{1.12}
\end{equation*}
$$

建立Krylov 多空间正交基

（d）Compute the matrix elements $B_{i j}$ ：

$$
\begin{align*}
B_{i j} & =0 & \text { for } i>j+1 \\
& =\left\|\tilde{\varphi}_{j+1}\right\| & \text { for } i=j+1 \\
& =\left\langle\bar{\varphi}_{i} \mid \varphi_{j+1}\right\rangle & \text { for } \quad i<j+1 . \tag{1.13}
\end{align*}
$$

（e）Use linear algebra techniques to obtain the eigenstates and eigenvalues of B ，e．g．dgeev．f from LAPACK．

$$
\begin{equation*}
B \cdot c=\lambda \cdot c \tag{1.14}
\end{equation*}
$$

建立Krylov尔空间正交基

1．Choose a normalized starting vector $\left|\bar{\varphi}_{0}\right\rangle$ and a starting energy E_{0} ．
2．Set the basis size $\mathcal{N}=1$ and apply steps（a）to（e）and store the eigenvalue λ_{1}
3．Increase the basis size \mathcal{N} by one and repeat steps（a）and（e）．Iterate until the eigenvalues λ_{n} reach a constant value（upto a chosen precision，e．g．，$\left|\lambda_{n}-\lambda_{n-1}\right|<1 e-6$ ）．

4．Choose the eigenstates corresponding to the eigenvalue closest to one and compute the wavefunction $|\phi\rangle$ from Eq．（1．5）．

5．Change to a new energy E_{1} and set $\left|\bar{\varphi}_{0}\right\rangle=|\phi\rangle$ ．Here a search routine，e．g．Newton－ Raphson Secant，should be used to determine the value of the new energy E_{1} ．

6．Repeat steps 2－4 until the variation in the energy falls below a chosen tolerance，e．\％．， $\left|E_{n}-E_{n-1}\right|<1 e-6$

$$
|\phi\rangle=\sum_{i=0}^{\mathcal{N}} c_{i}\left|\bar{\varphi}_{i}\right\rangle
$$

先编怿NNpotentiale文件夹下的程序来获得现实核力

```
! list of potnr implemented here
    potnr=3 => Nijm93
    potnr=7 => Nijm I
    potnr=8 => Nijm II
    potnr=11 => AV18 (needs input file!)
    potnr=12 => separable (needs input file!) (for testing)
    potnr=31 => CDB 2000
    potnr=63 => Idaho N3LO
    potnr=67 => Idaho N3LO 600
#define POTNR(31) 兑取现实该力的类型
```

计算A矩阵

计算D波的概率 $\quad|\Phi\rangle=\left|\phi_{0}\right\rangle+\left|\phi_{2}\right\rangle$
 $$
D \%=\left\langle\phi_{2} \mid \Phi\right\rangle
$$

程序说明

挑战：使用Krylov 攵空间方法简化矩阵求解牵征值问题

