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Uncertainty Quantification in nuclear physics

• Theory - Experiment feedback loop

• FRIB, RIKEN, CERN, ...

• Nuclear applications

• Description of astrophysical

phenomena

• Safety in nuclear reactors

• Estimate model errors

• Meaningful comparisons

• Extrapolate beyond the experiment

• Required for publishing in PRA

[http://www.nasa.gov/wise/pia18848]

[MSU Today. Photo by G.L. Kohuth]
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r-process, still an open challenge

• GW170817/GRB170817a/SSS17a

• Multi-messenger observation of a

neutron star merger

• 3674 researchers, 953

institutions, 1 paper

• confirmation of the r-process
[https://www.ligo.caltech.edu]

• Responsible for half of the heavy elements

• Several inputs

• Masses of neutron-rich nuclei

• β-decay rates

• Astrophysical environment

• Uncertainties from astrophysical and nuclear models
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Many body calculations for astrophysical processes

Sneden et al (2008)
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The nuclear many body problem

Ab-initio Mean field

(T +
∑A

ij Vij)Ψ = EΨ

• Every pair of nucleons is

accounted for

• “Realistic”

(T +
∑A

i Ṽi)Ψ = EΨ

• An average interaction is used

• “Phenomenological”
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Ab-initio methods with χ-EFT
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[Hergert et al. Phys. Rept. 621 (2016) 165]

• Systematic, order by order

• Light and medium nuclei X

• Heavy nuclei out of reach

• A problem of scaling

[Ekström et al. arXi:1707.09028]
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Phenomenological DFT (A type of mean field)

• DFT is based on

Hartree-Fock-Bogoliubov theory

• Non-linear eigenvalue problem

• Iterative solution

• Phenomenological interactions

• Good computational scaling

• Static and dynamic properties of

nuclei

• No systematic improvement
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State of the art in DFT: UNEDF family of functionals

• 12 to 14 parameters adjusted to

selected nuclear properties

• UNEDF0

• First optimization

• Spherical and deformed nuclei

• UNEDF1

• Focus on large deformations

• Improved description of fission

barriers

• UNEDF2

• 2 Additional parameters

• More experimental data

• The limit for Mean field?

[Schunck et al. EPJA51 (2015) 169]
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The best of both worlds

Mean Field Component

• Contact terms for short

range physics

• Adjusted to nuclear

properties

• Encodes many body

correlations

+

Microscopic Component

• Derived from χ-EFT

• Long range physics, pions

• Adjusted to NN scattering

• Fixed at the DFT level!

• Order by order

• Non-Local density!

A scalable framework with systematic improvements
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Microscopically constrained EDF

• Non-local densities for finite range potentials

ENN
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• Density Matrix Expansion (DME)

ρ
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≈ Πρ
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+
r2

6
Πρ
2(kFr)

[
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4
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3

5
k2Fρ(R)
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Like a Taylor expansion for the non-local density
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Optimizing DFT component

• UNEDF2 optimization

protocol

• 130 data, 14 parameters

• Masses, radii, fission

isomers, spin-orbit

splittings, nuclear matter

[Schunck et al. EPJA51 (2015) 169]
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Mass Tables
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Order by order improvement

EDF r.m.s. deviation

UNEDF2 1.98

LO 1.99

NLO∆ 1.41

N2LO∆ 1.26

[RNP, Schunck, Dyhdalo, Furnstahl, Bogner. PRC97 (2018) 05430]
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Nuclear Matter and Neutron Matter
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12



Single-Particle Spectra

Quantitatively comparable to UNEDF results
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12
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[RNP, Schunck, Dyhdalo, Furnstahl, Bogner. PRC97 (2018) 05430]

• Single-particle energies from blocking calculations

• Exactly the same conditions for all EDFs
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Deformation Properties

Quality of fission barriers is comparable to other EDFs
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• Inclusion of fission isomers in fitting protocols constrains

fission barriers

• Variations up to 2 MeV in height of fission barriers
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Not everything is great ...



Not everything is great ...

∆’s improve performance, 3N terms don’t

rms for Binding energies
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3N issue

Possible explanations:

• Implementation of the 3N terms

• Derivation of density dependent couplings X

• Calculation of density dependent couplings X?

• Implementation in numerical code X

• Optimization protocol ?
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3N issue

Possible explanations:

• Optimization protocol

• Automated diagnostic tools from Argonne National Lab

• Test that all observables are physically reasonable

• Actinides are deformed, 208Pb is doubly magic, ...

• Some level of noise has been present in all optimizations

• Including UNEDF

• New objective function has been defined

• Different weights for some binding energies.

• Recalibration is necessary

• Currently being done
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New optimization protocol

Original optimization (least sqaures function)
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New optimization protocol

Original optimization (rms for all masses)
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3N issue

Future possible explanations:

• Calculation of density dependent couplings.

• Issues in the calculation of mass tables.

• Similar checks for physical solutions

• More terms in the DME?

• Is this specific flavor or DME appropriate for 3N terms?
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Improving masses with Machine

Learning



Collaborators

• Garret Gallear

• M.S. Student, graduated in spring 2019

• Zach Barvian

• Current M.S. Student.
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Machine Learning algorithms in Nuclear Physics

Several new applications of ML to Nuclear Physics

• An abundance of data collected over several decades

• The ultimate goal is to make reliable predictions

22



Machine Learning algorithms

Typical process:

• Collect data

• Select target(s) (what you want to predict)

• Select features (independent variables)

• Split data in training and testing

• Train the algorithm (minimize a loss function)

• Benchmark against testing data (avoid over-fitting)

• Make new predictions

It’s a fancy interpolator
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Decision Trees

• A non-parametric approach

• A series of boolean questions to

reach a prediction

• Features can be numerical or

categorical

• More branches → better

description of training data

• Very easy to over-fit
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Random Forests: Avoiding Over-fitting

• Randomly select a subset

from the training data

• Create a decision tree

• Repeat hundreds of times

• Each tree will ask slightly

different questions

• Prediction will be the

average of all predictions
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Random Forests for Nuclear Model Discrepancy

Random Forests for Nuclear Model Discrepancy

• Collect data: Atomic Mass Evaluation 2016 and UNEDF0

• Select Target: ∆BE(Z,N) = BEtheo(Z,N)− BEexp(Z,N)

• Select Features: Number of protons Z and number of

neutrons N

• Split data: 75% trainnig, 25% testing

• Train the random forest: Training score 0.972(3)

• Benchmark against testing data: Testing score 0.79(5)

• Improved Binding energy:

BEML(Z,N) = BEtheory(Z,N)−∆BEML(Z,N)
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Random Forests for Nuclear Model Discrepancy
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What about the neutron rich nuclei?
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What about the neutron rich nuclei?
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Machine Learning is a terrible extrapolator

• Dogs vs Cats

• Dogs vs Cats vs Tables?

• Dogs vs Cats vs Wolfs?

• Benchmarking against testing data doesn’t tell you

anything about regions where there’s no data
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Machine Learning is a terrible extrapolator

Trying to reproduce ex

• Data in the [0, 2] interval

• Predictions in the [−1, 3] interval

• Different machine learning

algorithms

• Completely incorrect results
1 0 1 2 3
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support vector machine

This has been known for three decades!

Haley and Soloway, Extrapolation limitations of multilayer

feedforward neural networks, in Proceedings 1992

International Joint Conference on Neural Networks
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Testing extrapolation power
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Testing extrapolation power

Performance decreases with extrapolation length

N drop Training score Testing score Benchmark score

1 0.970(4) 0.79(5) 0.82(2)

2 0.967(4) 0.76(6) 0.79(2)

3 0.966(4) 0.74(6) 0.73(4)

4 0.966(4) 0.74(7) 0.67(4)

5 0.969(3) 0.77(5) 0.61(5)

6 0.967(3) 0.76(6) 0.50(5)
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Solution: Use features that avoid extrapolations

DFT produces additional properties for each nuclei

• Deformation parameters

• Nuclear radii

• Different contributions to the total energy

• Pairing energies

• Pairing gaps

Look for similar distributions between the in and out region
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New extrapolation power

Random Forests for Nuclear Model Discrepancy

• Collect data: Atomic Mass Evaluation 2016 and UNEDF0

• Select Target: ∆BE(Z,N) = BEtheo(Z,N)− BEexp(Z,N)

• Select Features ~F(Z,N)

• Z, pairing gap, energy corrections, deformation, spin-orbit

energy

• Split data: 75% trainnig, 25% testing

• Train the random forest: Training score 0.961(3)

• Benchmark against testing data: Testing score 0.71(5)

• Improved Binding energy:

BEML(Z,N) = BEtheory(Z,N)−∆BEML(~F)
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Testing extrapolation power

Benchmark remains consistent with testing

N drop Training score Testing score Benchmark score

1 0.959(3) 0.68(9) 0.77(2)

2 0.955(3) 0.68(4) 0.77(2)

3 0.954(3) 0.67(8) 0.74(2)

4 0.953(4) 0.63(8) 0.66(4)

5 0.950(4) 0.69(6) 0.63(3)

6 0.949(2) 0.61(4) 0.63(3)
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What about the neutron rich nuclei?
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Nuclear structure patterns are now present
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Limitations

Limitations

• There’s a decrease in testing score with new features

• r-process nuclei are even farther from our training data

• Is the model discrepancy the same in both regions?

• How reliable is our theory in the neutron rich side?

• Do our new features capture everything that we need?
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Summary and outlook



Summary

Microscopically constrained Mean Field calculations

• New family of EDFs constrained by χ-EFT

• Quality EDFs with global predictive power

• Surprising improvement in mass calculations

• ∆’s improve performance, 3N terms don’t

• Optimization is under review

Model Discrepancy with Machine Learning

• Easy to estimate model discrepancy

• Direct extrapolations are not reliable

• Selecting features that avoid extrapolations is crucial
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Outlook

Microscopically constrained Mean Field calculations

• Other possible checks for 3N under-performance:

• Review calculation of DME couplings

• Review calculation of mass tables

• Extra terms in DME

• DME Flavor

• Quantification and propagation of uncertainties

Model Discrepancy with Machine Learning

• Use different functionals (UNEDF1-2, DME, Skyrme, etc)

• Do all corrections point in the same direction?

• New predictions in r-process simulations
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