due February 8, 2019

1. Scattering from a Spherical Square Well

Two particles of mass m scatter. The potential between them is approximated by an attractive square well:

$$V(r) = \begin{cases} -V_0 & r < b\\ 0 & r > b \end{cases}, \tag{1}$$

where V_0 is a positive number.

- (a) To warm up work through problem 11.4 in Zettili
- (b) (6 p) Determine the scattering length a₀ for this potential.
 (Hint: Consider the logarithmic derivative when deriving your expressions, though Zettili does not use it.)
- (c) (6 p) Sketch a₀ versus the potential strength V₀ with V₀ starting at zero and getting large enough to produce a bound state.
 (Use your favorite plot program or Wolfram-alpha.)
- (d) For making a connection to bound states, review Section 6.3.3 in Zettili, which calculates the bound state for a spherical square well potential.
- (e) (6 p) Expand a_0 in powers of V_0 , thereby creating a Born Series for the scattering length.
- (f) (6 p) Show that this Born series diverges when the potential is strong enough to form a bound state.
- (g) (6 p) The same analysis can be used for repulsive potentials by changing the sign of V_0 . Sketch a_0 for a repulsive potential as a function of potential strength and deduce if the Born series may fail for a repulsive potential.
- (h) (6 p) Obtain an expression for the total cross section for low energy scattering in terms of the scattering length. Compare your expression with the total cross section for scattering off a hard sphere. Use your expansion from (e) to determine which information about the potential can be extracted from the total cross section.

(i) (6 p) The effective range expansion for the s-wave $(\ell = 0)$ is given by

$$k \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2} r_0 k^2, \tag{2}$$

where r_0 is called the *effective range*. Proceed as in (a), but keep the next order to extract r_0 for the spherical square well.