Phys 6021: Homework II

due February 1, 2019

Cross Sections and Phase Shift Analysis

An experiment measures the differential cross section for the elastic scattering of two particles with wave vector k in the center of momentum to have the form

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(\theta)=\frac{1}{k^{2}} e^{-2(1-\cos \theta)} \tag{1}
\end{equation*}
$$

1. [2 $p t$] Plot the differential cross section as function of the scattering angle θ for all allowed values of θ. For the plot decide which units you want to use (i.e. atomic, nuclear or particle) for k and make sure the cross section is given in the correct units. In addition, argue why you choose your specific value of k when you think of your specific physicical system and experimental situation. The axes of your plot are supposed to contain your units.
2. [3 pts] Without any detailed calculation, deduce the number of partial waves which may contribute to the scattering and indicate if this is compatible with scattering from a finite range potential.
3. [3 pts] What must be the modulus of the angle-dependent scattering amplitude, $\left|f_{E}(\theta)\right|$?
Remark: A complex number $z=x+i y=R e^{i \alpha}$ has modulus $R=\sqrt{x^{2}+y^{2}}$ and phase α.

Next, the experimentalist measures the total cross section for the same particles and finds it to have the form

$$
\begin{equation*}
\sigma_{t o t}=\frac{4 \pi}{k^{2}} \tag{2}
\end{equation*}
$$

4. [3 pts] What is the value of the scattering amplitude in forward direction, $f_{E}\left(0^{\circ}\right)$?
5. [3 pts] Assuming that the scattering amplitude has a constant phase, what is $f_{E}(\theta)$?
6. [3 pts] What is the total elastic (integrated elastic) cross section for this reaction? Comment on why this is the same or different from the total cross section.
7. [3 pts] Why must the phase shift $\delta_{l}(k)$ be complex for this reaction?
8. [3 pts] Find the $l=0$ phase shift for this interaction.

Phase Shifts for Hard Sphere Scattering [6 pts]

(a) Find the phase shifts for scattering by a hard sphere

$$
V(r)=\left\{\begin{array}{cc}
\infty & r<a \tag{3}\\
0 & r>a
\end{array}\right.
$$

(b) Find the total cross section for an incoming energy

$$
\begin{equation*}
E=\frac{\hbar^{2} k^{2}}{2 m} \tag{4}
\end{equation*}
$$

in the two limits

$$
\begin{align*}
k & \rightarrow 0 \\
k & \rightarrow \infty . \tag{5}
\end{align*}
$$

Give a physical interpretation of the factors 4 and 2 in your answers.

Hint 1: For $k \rightarrow \infty$ use the asymptotic form of j_{l} and n_{l} to obtain a simple form for $\sin ^{2} \delta_{l}$. Furthermore, replace the sum over l by an integral so that

$$
\begin{equation*}
\sigma=\sum_{l=0}^{l=k a} \sigma_{l} \approx \frac{4 \pi}{k} \int_{0}^{k a} d l(2 l+1) \sin ^{2} \delta_{l} . \tag{6}
\end{equation*}
$$

Hint 2: look at Zettili, Problem 11.3.

