Group Meeting 10.04

Reading Phys. Rev. Lett 124 (2020) 222504

Two-neutron halo is unveiled in ²⁹F

Hao Liu Yu Zhang Borromean two-neutron halo consists of a bound state between a core nucleus and two neutrons, where any of the two-body subsystems are unbound.

FIG 1: Table of nuclides. [1]

[1]. NuDat 3.0, NNDC. https://www.nndc.bnl.gov/nudat3/

N = 20, we discover the heaviest Borromean halo to date, and the first of its kind in the proton sd shell.

The measured total reaction cross section of the N = 20 nucleus 29F is much larger than that of 27F. This fact shows a two-neutron halo structure in 29F.

The information of 29F

- $S_{2n} = 1.4(6)MeV$
- The exited states of 27F and 29F are 915(12)keV, 1080(18)keV.
- Carbon is the last known element to exhibit a Borromean two-neutron halo, and we do not know about any neutron halos in fluorine.

Cross section of the 29F

- The Cross section of 29F is larger than others.
- 29F is far away from the linear relationship, increasing by about 12%.

This shows the presence of a two-neutron halo.

Cross section of the 29F

Meanwhile, we get the experimental radius of

 3.15 ± 0.04 fm and 3.50 ± 0.07 fm, increasing by 11%. And consider the 29F's proton radius as 27F's, we will get a large rms halo radius of 6.6 fm for 29F.

The difference between 27F and 29F's radius is about 0.35fm, which is similar to other 2-halo nuclei.

Shell calculation

$$^{29}F \Rightarrow^{27}F + n + n$$

$$\sigma_R = \alpha \sigma_R(2p_{3/2}) + (1 - \alpha)\sigma_R(1d_{3/2})$$

$$\alpha = 0.54 - 1$$

FIG 3: Mixing up 1d3/2 and 2p3/2

Shell calculation

- SDPF-MU hamiltonian
- EEdf1 interaction (including N3LO interaction and Fujita-Miyazawa three-body force)

Model	Isotope	1d3/2	1f7/2	2p3/2
SDPF-MU	27F	1.67	0.48	0.24
	29F	2.68	0.90	0.56
EEdf1	27F	0.84	2.19	1.26
	29F	0.80	1.08	0.67

FIG 4: The neutron occupying number of 27F and 29F, calculated by different shell models.

Other models and result

Ab initio coupled-cluster

 Δ -NNLO_{GO}

NNLOSAT

In the deformed reference state, the neutrons are dominantly associated with the 1d3/2 orbital. These states were self-consistently selected by the Hartree-Fock method. But halo is more related to the neutron in 2p3/2.

Particle rotor

Conclusion

This work shows that a small neutron separation energy (~1 MeV) and tensor force effects lead to a p-wave halo in 29F, one proton above conventional doubly closed shell Z = 8 and N = 20, just like 11Li.

178.3 β [.] = 10 β [.] n ? 5	30F N	29F 2.67 ms β = 100.00% β n ≈ 20.00% β2n ?	28F ≈ 0.046 as N	27F 5.0 ms β ⁻ = 100.00% β ⁻ n = 90.00% β ⁻ 2n ?
β [.] = 10 β [.] n ? 5		N	2.67 ms β [·] = 100.00% N β [·] n ≈ 20.00% β [·] 2n ?	5.0 ms ≈ 0.046 as 2.67 ms $\beta^{r} = 100.00\%$ N $\beta^{r} = 100.00\%$ N $\beta^{r}n = 90.00\%$ $\beta^{r}n \approx 20.00\%$ $\beta^{r}n \approx 20.00\%$ $\beta^{r}2n ?$ N
$\approx 0.046 \text{ as}$ 2.67 ms N $\beta^{\circ} = 100.00\%$ N $\beta^{\circ} n \approx 20.00\%$ $\beta^{\circ} 2n$?	28F 29F ≈ 0.046 as 2.67 ms N β' = 100.00% β'n ≈ 20.00% β'2n ?	28F ≈ 0.046 as N		

To get further, we want to know whether or not similar nuclei exist on N=50, 82, 126.