Probing the Z = 6 spin-orbit shell gap with (p, 2p) quasi-free scattering reactions

jizheng Bo, junzhe Liu

October 30, 2022

jizheng Bo, junzhe Liu

Probing the Z = 6 spin-orbit shell gap with (

October 30, 2022

- Provide key spectroscopic information
- The structure of exotic nuclei, the shell evolution
- The Z = 6 spin-orbit shell gap towards the neutron dripline
- N(p, 2p)C quasi-free scattering reactions
- A moderate reducion of the proton $1p_{1/2} 1p_{3/2}$ spin-orbit splitting

- The isospin dependence of the nucleon-nucleon(NN) residual interaction → the magic numbers near the stability line are not necessarily the same for exotic nuclei (which have large neutron-proton asymmetry)
- **②** The spin-orbit shell gap originates from the splitting of the $1p_{1/2} 1p_{3/2}$ orbits.
- **3** The tensor and 2-body spin-orbit forces acting on the 1p protons \rightarrow a quenching of the splitting (when neutrons are added in the $d_{5/2}$ and $s_{1/2}$ orbits)
- Results show the increase in the proton component (which signals a quenching of the $Z = 6 \ 1p_{1/2} 1p_{3/2}$ gap towards the dripline)

- A beam of Ar bombarded Be target \rightarrow products
- FRS: the fragment separator
- *R*³*B*/*LAND*: the setup which enables a kinetically complete measurement of QFS(p,2p) reactions in inverse kinematics
- The Crystal Ball (XB) detector array: the QFS reactions and γ rays from the decay of excited states are detected

Experimental details data \rightarrow PID (the particle-identification plots)

Fig. 1. Incoming (all 2) (left) and outgoing (Z = 6) (right) PID plots for the reaction ¹⁷N(p,2z)¹⁶C (first row), ¹⁰N(p,2z)¹⁶C (second row), and ²¹N(p,2z)²⁶C (third row) using a CH₂ reaction tarset. The sates on the isotones of interest are marked with an ellipsoid (incoming PID plots) and two straight lines (outgoing PID plots).

jizheng Bo, junzhe Liu

Probing the Z = 6 spin-orbit shell gap with (

5/8

Table 1

Incoming beam and target properties.

Beam	Energy [MeV/nucleon]	Total # of ions	Target	Thickness [g/cm ²]
¹⁷ N	438	$3.533 imes 10^7$	CH ₂	0.458
		1.131×10^{7}	С	0.558
¹⁹ N	430	2.534×10^{7}	CH_2	0.922
		1.034×10^{7}	С	0.935
²¹ N	422	1.693×10^{6}	CH ₂	0.922
		$5.127 imes 10^5$	С	0.935

Figure: The target properties as well as the energy of the incoming isotopes

-

< A IN

Figure: The distribution of the protons in the laboratory frame

Thank you for your listening!

< 17 ▶

æ

∃ →