Eigenvector continuation in nuclear physics

Sebastian König, NC State University
Virtual Seminar, Central China Normal University
January 24, 2022

SK, Ekström, Hebeler, Lee, Schwenk, PLB 810135814 (2020)
Yapa, SK, arXiv:2201.08313 (2022)

NC STATE UNIVERSITY

Theory Alliance

Nuclear effective field theories

- choose degrees of freedom approriate to energy scale
- only restricted by symmetry, ordered by power counting

Hammer, SK, van Kolck, RMP 92025004 (2020)

- $\rightsquigarrow a b$ initio predictions with fully quantified uncertainties

- degrees of freedom here: nucleons (and clusters thereof)
- even more effective d.o.f.: rotations, vibrations

Chiral interactions

Many remarkable results based on chiral potentials

- Chiral EFT: expand in $\left(Q \sim M_{\pi}\right) / M_{\mathrm{QCD}}$, derive potential (2N, 3N, ...)

Weinberg (90); Rho (91); Ordoñez + van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem + Machleidt (03);

$\mathrm{N}^{\mathrm{s}} \mathrm{LO}\left(\mathrm{Q}^{4}\right)$

Epelbaum et al., EPJA 5153 (2015)

Hebeler et al., PRC 91044001 (2015)

However...

- potential expansion not necessarily consistent with EFT paradigm
- typically needs high orders \rightsquigarrow rather large number of parameters
- e.g. 14 (two-body) +2 (three-body) at third order

Eigenvector continuation

Many physics problems are tremendously difficult...

- huge matrices, possibly too large to store
- ever more so given the evolution of typical HPC clusters
- most exact methods suffer from exponential scaling
- interest only in a few (lowest) eigenvalues

Introducing eigenvector continuation

D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL 121032501 (2018)

KDE Oxygen Theme

- novel numerical technique
- can solve otherwise untractable problems
- amazingly simple in practice
- broadly applicable
- pretty big hammer, nails everywhere

Hubbard model

- three-dimensional Bose-Hubbard model (4 bosons on $4 \times 4 \times 4$ lattice)
- hopping parameter t, on-site interaction $U \leadsto H=H(c=U / t)$

- Bose gas for $c>0$, weak binding for $-3.8<c<0$, tight cluster for $c<-3.8$
- eigenvector continuation can extrapolate across regimes

General idea

Scenario

- consider physical state (eigenvector) in a large space
- parametric dependence of Hamiltonian $H(c)$ traces only small subspace

Procedure

- calculate $\left|\psi\left(c_{i}\right)\right\rangle, i=1, \ldots N_{\mathrm{EC}}$ in "easy" regime
- solve generalized eigenvalue problem $H|\psi\rangle=\lambda N|\psi\rangle$ with
- $H_{i j}=\left\langle\psi_{i}\right| H\left(c_{\text {target }}\right)\left|\psi_{j}\right\rangle$
- $N_{i j}=\left\langle\psi_{i} \mid \psi_{j}\right\rangle$

Prerequisite

- smooth dependence of $H(c)$ on c
- enables analytic continuation of $|\psi(c)\rangle$ from $c_{\text {easy }}$ to $c_{\text {target }}$

Outine

Introduction \downarrow
Reverse SRG Evolution
Efficient Emulators
Volume Extrapolation

Part I

Reverse SRG Evolution

Similarity Renormalization Group (SRG)

- nuclear potentials (from EFT or otherwise) can be difficult to handle numerically
- unitary transformation of Hamiltonian: $H \rightarrow H_{\lambda}=U_{\lambda} H U_{\lambda}^{\dagger} \rightsquigarrow V_{\lambda}$-decouple low and high momenta at scale λ

R. Furnstahl, HUGS 2014 lecture slides
- interaction becomes more amenable to numerical methods...
- ...at the cost of induced many-body forces!

SRG evolution = ODE solving

$$
\frac{\mathrm{d} H_{s}}{\mathrm{~d} s}=\frac{\mathrm{d} V_{s}}{\mathrm{~d} s}=\left[\left[G, H_{s}\right], H_{s}\right], \lambda=1 / s^{1 / 4}
$$

ordinary differential equation ensures smooth parametric dependence
\hookrightarrow SRG evolution satisfies EC prerequisites!

Reverse SRG

Consider $A=3,4$ test cases

- EMN N3LO(500) interaction, Jacobi NCSM calculation

Entem et al., PRC 96024004 (2017); A. Ekström implementation of Navratil et al., PRC 61044001 (2000)

Reverse SRG

Consider $A=3,4$ test cases

- EMN N3LO(500) interaction, Jacobi NCSM calculation

Entem et al., PRC 96024004 (2017); A. Ekström implementation of Navratil et al., PRC 61044001 (2000)

Not even induced 3N forces kept here!

- possible to extrapolate back from small λ to bare interaction
- information about missing many-body forces in wavefunctions
- not in any single wavefunction, but in how they change

Mind the gap

Still no free lunch, however...

- EC is a variational method
- cannot go beyond what bare interaction gives in same model space!

Part II

Efficient Emulators via Eigenvector Continuation

SK, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, PLB 810135814 (2020)

Need for emulators

1. Fitting of LECs to few- and many-body observables

- common practice now to use $A>3$ to constrain nuclear forces, e.g.:
- JISP16, NNLO $_{\text {sat }}, \alpha-\alpha$ scattering

Shirokov et al., PLB 64433 (2007); Ekström et al., PRC 91051301 (2015); Elhatisari et al., PRL 117132501 (2016)

- fitting needs many calculations with different parameters

2. Propagation of uncertainties

- statistical fitting gives posteriors for LECs
- LEC posteriors propagate to observables

Wesolowski et al., JPG 46045102 (2019)

- need to sample a large number of calculations
- expensive already in few-body sector!

Emulators

Exact calculations can be prohibitively expensive!

Options

- multi-dimensional polynomial interpolation
- simplest possible choice
- typically too simple, no way to assess uncertainty
- Gaussian Process (GP)

- statistical modeling, iteratively improvable
- interpolation with inherent uncertainty estimate

Recall

Eigenvector continuation can interpolate and extrapolate!

Hamiltonian parameter spaces

- original EC: single parameter, $H=H(c)$
- consider a Hamiltonian depending on several parameters:

$$
\begin{equation*}
H=H_{0}+V=H_{0}+\sum_{k=1}^{d} c_{k} V_{k} \tag{1}
\end{equation*}
$$

- in particular, V can be a chiral potential with LECs c_{k}
- Hamiltonian is element of d-dimensional parameter space
- convenient notation: $\vec{c}=\left\{c_{k}\right\}_{k=1}^{d}$
- typical for $\mathcal{O}\left(Q^{3}\right)$ calculation: 14 two-body LECs +2 three-body LECs

Chiral interactions

Many remarkable results based on chiral potentials

- Chiral EFT: expand in $\left(Q \sim M_{\pi}\right) / M_{\mathrm{QCD}}$, derive potential (2N, 3N, ...)

Weinberg (90); Rho (91); Ordoñez + van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem + Machleidt (03);

$\mathrm{N}^{\mathrm{s}} \mathrm{LO}\left(\mathrm{Q}^{4}\right)$

Epelbaum et al., EPJA 5153 (2015)

Hebeler et al., PRC 91044001 (2015)

However...

- potential expansion not necessarily consistent with EFT paradigm
- typically needs high orders \rightsquigarrow rather large number of parameters
- e.g. 14 (two-body) +2 (three-body) at third order

Hamiltonian parameter spaces

- original EC: single parameter, $H=H(c)$
- consider a Hamiltonian depending on several parameters:

$$
\begin{equation*}
H=H_{0}+V=H_{0}+\sum_{k=1}^{d} c_{k} V_{k} \tag{1}
\end{equation*}
$$

- in particular, V can be a chiral potential with LECs c_{k}
- Hamiltonian is element of d-dimensional parameter space
- convenient notation: $\vec{c}=\left\{c_{k}\right\}_{k=1}^{d}$
- typical for $\mathcal{O}\left(Q^{3}\right)$ calculation: 14 two-body LECs +2 three-body LECs

Hamiltonian parameter spaces

- original EC: single parameter, $H=H(c)$
- consider a Hamiltonian depending on several parameters:

$$
\begin{equation*}
H=H_{0}+V=H_{0}+\sum_{k=1}^{d} c_{k} V_{k} \tag{1}
\end{equation*}
$$

- in particular, V can be a chiral potential with LECs c_{k}
- Hamiltonian is element of d-dimensional parameter space
- convenient notation: $\vec{c}=\left\{c_{k}\right\}_{k=1}^{d}$
- typical for $\mathcal{O}\left(Q^{3}\right)$ calculation: 14 two-body LECs +2 three-body LECs

Generalized EC

- EC construction is straightforward to generalize to this case:
- simply replace $c_{i} \rightarrow \vec{c}_{i}$ in construction
- $\left|\psi_{i}\right\rangle=\left|\psi\left(\vec{c}_{i}\right)\right\rangle$ for $i=1, \cdots N_{\mathrm{EC}}$
- $H_{i j}=\left\langle\psi_{i}\right| H\left(\vec{c}_{\text {target }}\right)\left|\psi_{j}\right\rangle, N_{i j}=\left\langle\psi_{i} \mid \psi_{j}\right\rangle$

Note: sum in Eq. (1) can be carried out in small (dimension $=N_{\mathrm{EC}}$) space!

Interpolation and extrapolation

Hypercubic sampling

- want to cover parameter space efficiently with training set $S=\left\{\vec{c}_{i}\right\}$
- Latin Hypercube Sampling can generate near random sample
- for examples that follow:
- sample each component $c_{k} \in[-2,2]$
- vary d LECs, fix the rest at $\mathrm{NNLO}_{\text {sat }}$ point

Interpolation and extrapolation

Hypercubic sampling

- want to cover parameter space efficiently with training set $S=\left\{\vec{c}_{i}\right\}$
- Latin Hypercube Sampling can generate near random sample
- for examples that follow:
- sample each component $c_{k} \in[-2,2]$
- vary d LECs, fix the rest at $\mathrm{NNLO}_{\text {sat }}$ point

Convex combinations

- distinguish interpolation and extrapolation target points
- interpolation region is convex hull of the $\left\{\vec{c}_{i}\right\}$
$-\operatorname{conv}(S)=\sum_{i} \alpha_{i} \vec{c}_{i}$ with $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i}=1$
- extrapolation for $\vec{c}_{\text {target }} \notin \operatorname{conv}(S)$
- EC can handle both!

Performance comparison: energy

Cross validation

- compare emulation prediction agains exact result for set $\left\{\vec{c}_{\text {target }, j}\right\}_{j=1}^{N}$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61044001 (2000)
- observable: ${ }^{4} \mathrm{He}$ ground-state energy
- transparent symbols indicate extrapolation targets

Performance comparison: energy

Cross validation

- compare emulation prediction agains exact result for set $\left\{\vec{c}_{\text {target }, j}\right\}_{j=1}^{N}$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61044001 (2000)
- observable: ${ }^{4} \mathrm{He}$ ground-state energy
- transparent symbols indicate extrapolation targets

Performance comparison: energy

Cross validation

- compare emulation prediction agains exact result for set $\left\{\vec{c}_{\text {target }, j}\right\}_{j=1}^{N}$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61044001 (2000)
- observable: ${ }^{4} \mathrm{He}$ ground-state energy
- transparent symbols indicate extrapolation targets

Performance comparison: energy

Cross validation

- compare emulation prediction agains exact result for set $\left\{\vec{c}_{\text {target }, j}\right\}_{j=1}^{N}$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61044001 (2000)
- observable: ${ }^{4} \mathrm{He}$ ground-state energy
- transparent symbols indicate extrapolation targets

Performance comparison: radius

Operator evaluation

- generalized eigenvalue problem
- EC gives not only energy, but also a continued wavefunction
- straightforward (and inexpensive) to evaluate arbitrary operators

EC uncertainty estimate

- EC is a variational method
- projection of Hamiltonian onto a subspace
- dimension of this subspace determines the accuracy
- excellent convergence properties

Bootstrap approach

- leave out sets of basis vectors, take mean and standard deviation

Computational cost

- setup of EC subspace basis
- combination of Hamiltonian for given \vec{c}_{i}, Lanczos diagonalization
- total cost $=M^{2} \times\left(2 n+N_{\mathrm{mv}}\right)$ flops
- calculation of norm matrix: $2 n^{2} M$ flops
- reduction of Hamiltonian parts: $(d+1) \times\left(2 n M^{2}+2 n^{2} M\right)$ flops
- cost per emulated sample point
- combination of Hamiltonian parts in small space: $2 d n^{2}$ flops
- orthogonalization + diagonalization: $26 n^{3} / 3+\mathcal{O}\left(n^{2}\right)$ flops
$M=M\left(N_{\max }\right)$: model-space dim., n : training data, N : samples, $N_{\text {mv }}$: matrix-vector prod. (Lanczos)

Example

- $N_{\text {max }}=16$
- $d=16, N_{\mathrm{EC}}=64$
- max. speed-up factor ~ 600

Part III

Volume Extrapolation via Eigenvector Continuation

N. Yapa, SK, arXiv:2201.08313 (2022)

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies

Lüscher formalism

- physical properties encoded in the volume-dependent energy levels
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

Volume extrapolation

Why?

Finite-volume resonance signatures

Lüscher formalism

- finite volume \rightarrow discrete energy levels $\rightarrow p \cot \delta_{0}(p)=\frac{1}{\pi L} S(E(L)) \rightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB 354531 (1991);
Wiese, NPB (Proc. Suppl.) 9609 (1989);

Finite-volume resonance signatures

Lüscher formalism

- finite volume \rightarrow discrete energy levels $\rightarrow p \cot \delta_{0}(p)=\frac{1}{\pi L} S(E(L)) \rightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing \quad Lüscher, NPB 354531 (1991);

Finite-volume resonance signatures

Lüscher formalism

- finite volume \rightarrow discrete energy levels $\rightarrow p \cot \delta_{0}(p)=\frac{1}{\pi L} S(E(L)) \rightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Finite-volume resonance signatures

Lüscher formalism

- finite volume \rightarrow discrete energy levels $\rightarrow p \cot \delta_{0}(p)=\frac{1}{\pi L} S(E(L)) \rightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB 354531 (1991);
Wiese, NPB (Proc. Suppl.) 9609 (1989);

- direct correspondence between phase-shift jump and avoided crossing only for twobody systems, but the spectrum signature carries over to few-body systems

Finite-volume eigenvector continuation

Naive setup

- consider states $\left|\psi_{L_{i}}\right\rangle$ at volume L_{i}
- want to use these to extrapolate via EC to target volume L_{*}
- to that end, we'd consider Hamiltonian and norm matrices like this:

$$
\begin{aligned}
& H_{i j}=\left\langle\psi_{L_{L}}\right| H_{L_{*}}\left|\psi_{L_{j}}\right\rangle \\
& N_{i j}=\left\langle\psi_{L_{i}} \mid \psi_{L_{j}}\right\rangle
\end{aligned}
$$

Finite-volume eigenvector continuation

Naive setup

- consider states $\left|\psi_{L_{i}}\right\rangle$ at volume L_{i}
- want to use these to extrapolate via EC to target volume L_{*}
- to that end, we'd consider Hamiltonian and norm matrices like this:

$$
\begin{aligned}
& H_{i j}=\left\langle\psi_{L_{L}}\right| H_{L_{*}}\left|\psi_{L_{j}}\right\rangle \\
& N_{i j}=\left\langle\psi_{L_{i}} \mid \psi_{L_{j}}\right\rangle
\end{aligned}
$$

However...

All the $\left|\psi_{L_{i}}\right\rangle$ are defined in different Hilbert spaces!

- parametric dependence now not only in the Hamiltonian...
- ...but inherent in the basis
- need to generalize EC to deal with this scenario

Dilatations

- consider a function f with period $L, f \in \mathcal{H}_{L}$
- this can be mapped onto a function with period L^{\prime} by means of a dilatation:

$$
\left(D_{L, L^{\prime}} f\right)(x)=\sqrt{\frac{L}{L^{\prime}}} f\left(\frac{L}{L^{\prime}} x\right)
$$

- this provides a bijection between the Hilbert spaces \mathcal{H}_{L} and \mathcal{H}_{L}^{\prime}

Example: periodic bound-state wavefunction

Periodic matching

- consider the union of all periodic Hilbert spaces: $\mathcal{H}=\bigcup_{L>0} \mathcal{H}_{L}$
- not a Hilbert space with normal pointwise addition
- define a new operation for $f \in \mathcal{H}_{L}, g \in \mathcal{H}_{L^{\prime}}, L^{\prime}>L$:

$$
(f \stackrel{\max }{+} g)(x)=\left(D_{L, L^{\prime}} f\right)(x)+g(x)
$$

- similarly, define inner products between different periodicities:

$$
\langle f, g\rangle_{\max }=\left\langle D_{L, L^{\prime}} f, g\right\rangle_{\mathcal{H}_{L^{\prime}}}=\int_{-L^{\prime} / 2}^{L^{\prime} / 2}\left(D_{L, L^{\prime}} f\right)(x)^{*} g(x) \mathrm{d} x
$$

- together, these make \mathcal{H} a vector space with inner product

Periodic matching

- consider the union of all periodic Hilbert spaces: $\mathcal{H}=\bigcup_{L>0} \mathcal{H}_{L}$
- not a Hilbert space with normal pointwise addition
- define a new operation for $f \in \mathcal{H}_{L}, g \in \mathcal{H}_{L^{\prime}}, L^{\prime}>L$:

$$
\left(f^{\max }+g\right)(x)=\left(D_{L, L^{\prime}} f\right)(x)+g(x)
$$

- similarly, define inner products between different periodicities:

$$
\langle f, g\rangle_{\max }=\left\langle D_{L, L^{\prime}} f, g\right\rangle_{\mathcal{H}_{L^{\prime}}}=\int_{-L^{\prime} / 2}^{L^{\prime} / 2}\left(D_{L, L^{\prime}} f\right)(x)^{*} g(x) \mathrm{d} x
$$

- together, these make \mathcal{H} a vector space with inner product

Truncated periodic bases

- let $S_{L, N}$ be a truncated basis of plane-wave states
- then for $\psi \in S_{L, N}$ and $\psi^{\prime} \in S_{L^{\prime}, N}$, the \mathbb{R}^{N} inner product of coefficient vectors is the same as $\langle\cdot, \cdot\rangle_{\text {max }}$

Discrete variable representation

Efficient calculation of several few-body energy levels

- use a Discrete Variable Representation (DVR)
well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87051301 (2013)
- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix very sparse
- precalculate only 1D matrix elements

- periodic boundary condistions \leftrightarrow plane waves as starting point
- efficient implementation for large-scale calculations
- handle arbitrary number of particles (and spatial dimensions)
- numerical framework scales from laptop to HPC clusters
- recent extensions: GPU acceleration, separable interactions

DVR construction

Basic idea

- start with some initial basis; here: plane waves $\phi_{i}(x)=\frac{1}{\sqrt{L}} \exp \left(\mathrm{i} \frac{2 \pi i}{L} x\right)$
- consider $\left(x_{k}, w_{k}\right)$ such that $\sum_{k=-N / 2}^{N / 2-1} w_{k} \phi_{i}^{*}\left(x_{k}\right) \phi_{j}\left(x_{k}\right)=\delta_{i j}$

DVR states

- $\psi_{k}(x)$ localized at $x_{k}, \psi_{k}\left(x_{j}\right)=\delta_{k j} / \sqrt{w_{k}}$
- note duality: momentum mode $\phi_{i} \leftrightarrow$ spatial mode ψ_{k}

Two-body proof of concept

- consider a simple two-body system as first example
- attractive Gaussian interaction: $V(r)=V_{0} \exp \left(-\left(\frac{r}{R}\right)^{2}\right), R=2, V_{0}=-4$
- note: cubic finite volume breaks spherical symmetry
- angular momentum no longer good quantum number
- instead: cubic irreducible representations $\Gamma \in A_{1}, A_{2}, E, T_{1}, T_{2}$
- to good approximation, S-wave states $\sim A_{1}^{+}$irrep. (positive parity)

Three-boson resonance

- three bosons with mass $m=939.0 \mathrm{MeV}$, potential = sum of two Gaussians
- three-body resonance at
- $-5.31-i 0.12 \mathrm{MeV}$ (Blandon et al., PRA 75042508 (2007))
- $-5.96-i 0.40 \mathrm{MeV}$ (Fedorov et al., FB Syst. 33153 (2003)) (potential S-wave projected!)

- avoided crossing well reproduced by FVEC calculation

Three neutrons

- now consider three neutrons with Pionless EFT leading-order interaction

$$
V\left(q, q^{\prime}\right)=C g(q) g\left(q^{\prime}\right) \quad, \quad g(q)=\exp \left(-q^{2 n} / \Lambda^{2 n}\right)
$$

- separable super-Gaussian form with $n=2$ and $\Lambda=250 \mathrm{MeV}$
- efficiently implemented within DVR framework

- total number of training data: $3 \times 8=24$ (partly covering cubic group multiplets)

Uncertainty quantification

- FVEC uncertainty depends on choice of training data
- domain to choose from (note also: extrapolation vs. interpolation)
- number N_{EC} of training space (controls dimension of FVEC subspace)
- use this dependence to estimate uncertainty
- calculate initial pool of training data
- from that pool, consider combinations with fixed $N_{\text {EC }}$

Application to two-body system

Uncertainty quantification

- FVEC uncertainty depends on choice of training data
- domain to choose from (note also: extrapolation vs. interpolation)
- number $N_{\text {EC }}$ of training space (controls dimension of FVEC subspace)
- use this dependence to estimate uncertainty
- calculate initial pool of training data
- from that pool, consider combinations with fixed N_{EC}

Application to two-body system

Summary and outlook

- Reverse SRG via eigenvector continuation
- possible to undo unitary transformation of potential
- recover unevolved result without including induced many-body force

Summary and outlook

- Reverse SRG via eigenvector continuation
- possible to undo unitary transformation of potential
- recover unevolved result without including induced many-body force
- Eigenvector continuation as efficient emulator
- highly competitive, accurate and efficient
- can both interpolate and extrapolate from training set
- provides uncertainty estimates via bootstrap approach
- Volume extrapolation via eigenvector continuation
- extension of EC to handle parametric dependence direcly in basis
- makes it possible to extrapolate reliably over large volume ranges

Summary and outlook

- Reverse SRG via eigenvector continuation
- possible to undo unitary transformation of potential
- recover unevolved result without including induced many-body force
- Eigenvector continuation as efficient emulator
- highly competitive, accurate and efficient
- can both interpolate and extrapolate from training set
- provides uncertainty estimates via bootstrap approach
- Volume extrapolation via eigenvector continuation
- extension of EC to handle parametric dependence direcly in basis
- makes it possible to extrapolate reliably over large volume ranges

Other applications and future directions

- large-scale uncertainty quantification

Ekström + Hagen, PRL 123252501 (2019)

- scattering calculations

Furnstahl et al., PLB 809135719 (2020)

- resonances

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Andis (NCSU)
- H.-W. Hammer, A. Schwenk, K. Hebeler, A. Tichai (TU Darmstadt)
- H. W. Grießhammer (G. Washington U.), U. van Kolck (IPN Orsay, U. of Arizona)
- A. Ekström (Chalmers U.)
- D. Lee, A. Sarkar (Michigan State U.)
- T. Duguet, V. Somà, M. Frosini (CEA Saclay), P. Demol (KU Leuven)
...for support, funding, and computing time...

- Jülich Supercomputing Center

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Andis (NCSU)
- H.-W. Hammer, A. Schwenk, K. Hebeler, A. Tichai (TU Darmstadt)
- H. W. Grießhammer (G. Washington U.), U. van Kolck (IPN Orsay, U. of Arizona)
- A. Ekström (Chalmers U.)
- D. Lee, A. Sarkar (Michigan State U.)
- T. Duguet, V. Somà, M. Frosini (CEA Saclay), P. Demol (KU Leuven)
...for support, funding, and computing time...

- Jülich Supercomputing Center
...and to you, for your attention!

