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Nuclear Science model uncertainty

Neutrinoless double beta decay

r-process: extrapolation to the dripline and beyond; ties in to other 
nuclear-structure issues

Heavy-ion Collisions: energy deposition; pre-hydrodynamic stage; 
conversion of hydrodynamic output to final-state particles

Different approaches to reaction dynamics (R-matrix, statistical 
models, global optical potentials, microscopic optical potentials, …)



Outline
3He + 4He→7Be + γ as an example of how to assess model uncertainty

How Halo Effective Field Theory can help

From S-factor data to Halo EFT parameters, and back

Halo EFT as a “super model”

Bayesian Model Averaging→Bayesian Model Mixing

What is Bayesian Model Averaging?

An application: the overall prediction of EDFs for the neutron drip 
line

Toy-model test of BMA

The BAND Software Framework



Why is 3He(4He,ɣ) important?

Accurate knowledge 
of 3He(4He,ɣ) 
needed to reliably 
predict amount of 
7Be in the Sun

Therefore key for 
prediction of 8B 
solar neutrino flux

BBN implications, 
but I will not discuss 
those here

Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)
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This is an extrapolation problem 

E1 capture: 3He + 4He→7Be + γ 
and  7Be + p→8B + γ

Energies of relevance 20 keV
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ℳ(E) ∝ ∫ dr A1 exp(−γ1r)(1 +
1

γ1r ) r(cot δ(E)sin(pr) + cos(pr))

Building a good extrapolant
 dominated by inter-nucleus separations outside V(r)ℳ(E)

ANC
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ℳ(E) ∝ ∫ dr A1 exp(−γ1r)(1 +
1

γ1r ) r(cot δ(E)sin(pr) + cos(pr))

Building a good extrapolant

; 
;   
; 

kC = Q1Q2αemMR ≈ 40 MeV
p = 2mRE γ1 = 2mRS3He
= 1/(3 fm) a ≈ 30 − 50 fm

Extrapolation is not a polynomial: non-
analyticities in p/kC, p/ɣ1, and p a. 

Sub-leading terms in E/Ecore correct for 
what happens inside V(r)

SFII: energy dependence taken from 
models, overall size adjusted to data

 dominated by inter-nucleus separations outside V(r)ℳ(E)

ANC
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Halo EFT

Define Rhalo=<r2>1/2. Seek EFT expansion in Rcore/Rhalo. Valid for λ≲Rhalo

Typically R≡Rcore∼2 fm. And since <r2> is related to the neutron separation 
energy we are looking for systems with neutron separation energies less than 
1 MeV

By this definition the deuteron is the lightest halo nucleus, and the pionless 
EFT for few-nucleon systems is a specific case of halo EFT

4He

n

n

λ≫Rcore; λ≲Rhalo



Lagrangian: shallow S- and P-states

c, n: “core”, “neutron” fields. c: boson, n: fermion. 

σ, πj: S-wave and P-wave fields

Minimal substitution generates leading EM couplings

Additional EM couplings at sub-leading order
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p-wave bound states and capture thereto
At LO p-wave 1n halo described solely by its ANC and binding energy

Capture to the p-wave state proceeds via the one-body E1 operator: 
“external direct capture”

NLO: piece of the amplitude representing capture at short distances, 
represented by a contact operator⇒there is an LEC that must be fit

u1(r) = A1 exp(��1r)
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3He + 4He→7Be + γE1 at LO in Halo EFT

In this system Rcore∼1.5 fm, Rhalo ∼3 fm

Zhang, Nollett, DP, J. Phys. G (2020); cf. Rupak, Higa, Vaghani, EPJA (2018)



3He + 4He→7Be + γE1 at LO in Halo EFT

In this system Rcore∼1.5 fm, Rhalo ∼3 fm

Also need to include Coulomb interactions non-perturbatively:  
kC=QcQnαEMMR=45 MeV; a∼10s of fm, both ~Rhalo

apc

σpn

k λ

p α

Zhang, Nollett, DP, J. Phys. G (2020); cf. Rupak, Higa, Vaghani, EPJA (2018)



3He + 4He→7Be + γE1 at LO in Halo EFT

In this system Rcore∼1.5 fm, Rhalo ∼3 fm

Also need to include Coulomb interactions non-perturbatively:  
kC=QcQnαEMMR=45 MeV; a∼10s of fm, both ~Rhalo

Scattering wave functions are linear combinations of Coulomb wave 
functions F0 and G0. Bound state wave function=the appropriate Whittaker 
function.

apc

σpn

k λ

p α

Zhang, Nollett, DP, J. Phys. G (2020); cf. Rupak, Higa, Vaghani, EPJA (2018)



3He + 4He→7Be + γE1 at LO in Halo EFT

In this system Rcore∼1.5 fm, Rhalo ∼3 fm

Also need to include Coulomb interactions non-perturbatively:  
kC=QcQnαEMMR=45 MeV; a∼10s of fm, both ~Rhalo

Scattering wave functions are linear combinations of Coulomb wave 
functions F0 and G0. Bound state wave function=the appropriate Whittaker 
function.

apc

σpn

k λ

p α

Zhang, Nollett, DP, J. Phys. G (2020); cf. Rupak, Higa, Vaghani, EPJA (2018)

S(E) =
e2πη

e2πη − 1
8π
9

(eZeff )2kCω3A2 [ |𝒮EC(E; δ(E)) |2 + |𝒟(E) |2 ]



3He + 4He→7Be + γE1 at LO in Halo EFT

In this system Rcore∼1.5 fm, Rhalo ∼3 fm

Also need to include Coulomb interactions non-perturbatively:  
kC=QcQnαEMMR=45 MeV; a∼10s of fm, both ~Rhalo

Scattering wave functions are linear combinations of Coulomb wave 
functions F0 and G0. Bound state wave function=the appropriate Whittaker 
function.

apc

σpn

k λ

p α

Three parameters at 
leading order

Zhang, Nollett, DP, J. Phys. G (2020); cf. Rupak, Higa, Vaghani, EPJA (2018)

S(E) =
e2πη

e2πη − 1
8π
9

(eZeff )2kCω3A2 [ |𝒮EC(E; δ(E)) |2 + |𝒟(E) |2 ]
Can also predict capture to the excited 1/2- in 7Be



Effective range (can add shape parameter which enters at N3LO)

LECs associated with contact interaction,     and  

Can also consider contact interaction for D-wave capture,       (enters at N4LO)

S(E) =
e2πη

e2πη − 1
8π
9

kCω3A2 [ |𝒮EC(E; δ(E)) + L̄ 𝒮SD(E; δ(E)) |2 + |𝒟(E) |2 ]

Additional ingredients at NLO

Three more parameters at NLO

Zhang, Nollett, DP, Phys. Lett. B751, 535 (2015), Phys. Rev. C (2018); 
Ryberg, Forssen, Platter, Ann. Phys. (2016) 
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Halo EFT as a “super model”
Halo EFT is the EFT of all the models used to extrapolate the cross section in 
“Solar Fusion II”: should reproduce them at NLO accuracy in validity region

Differences are sub-% level between 0 and 1.5 MeV

Parameters generally obey a~1/Rhalo, r ~Rcore, L~Rcore; some large N4LO parameters
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59 S-factor data below 2 MeV

Seattle (S)

Weizman

Luna (L)

Erna

Notre Dame

Atomiki

In general use activation data, to avoid photon emission asymmetry systematic; 
recoil data from Erna; prompt measurements from Notre Dame

Deal with CMEs by introducing six additional parameters, ξi

Plus 32 branching-ratio data: CMEs assumed absent there

Data for 3He + 4He→7Be + γE1 

CMEs

3%

2.2%

2.9%

5%

8%

5.9%



Bayesian tools

http://www.bayesian-inference.com

Thomas Bayes (1701?-1761)
pr(A|B, I) =

pr(B|A, I)pr(A|I)
pr(B|I)

http://physics.stackexchange.com
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Bayesian tools

http://www.bayesian-inference.com

Thomas Bayes (1701?-1761)

Posterior

Likelihood

Normalization

Prior

Probability as 
degree of belief

pr(A|B, I) =
pr(B|A, I)pr(A|I)

pr(B|I)

Marginalization: pr(x|data, I) =
Z

dy pr(x, y|data, I)

Allows us to integrate out “nuisance” (e.g. higher-order) parameters

pr(x|data, I) = pr(data|x, I)pr(x|I)
pr(data|I)

http://physics.stackexchange.com
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Building the pdf

Mild Bayesian priors:

Independent gaussian priors for ξi, centered at zero and with 
width=CME

Other EFT parameters, a, r, L, and two ANCs assigned flat priors, 
corresponding to natural ranges

Probability           sampled using Markov Chain Monte Carlo

χ2 ≡
Nexp

∑
J

{
Ns,J

∑
j=1

[(1 − ξJ)S( ⃗g ; EJj) − DJj]
2

σ2
Jj

+
ξ2

J

σ2
c,J } +

Nbr

∑
l=1

[Br( ⃗g ; El) − D̃l]2

σ2
br,l

𝛘2 needs to include cross-section and branching-ratio data

e−χ2/2
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3He(4He,ɣ) results

E1 external direct capture to a 
shallow p-wave bound state

Only one spin channel

Integral is not dominated by as 
large r as in 7Be(p,ɣ)

More sensitivity to 3He-4He 
scattering parameterization

Distribution peaks at          χ2 = 82

Bayesian evidence ratio≅6 for 
NLO cf. N4LO

Zhang, Nollett, DP, JPG (2020)
cf. Higa, Rupak, Vaghani, EPJA (2018)
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3He + 4He→7Be + γ as an example of how to assess model uncertainty

How Halo Effective Field Theory can help

Halo EFT as a “super model”

From S-factor data to Halo EFT parameters, and back

Bayesian Model Averaging→Bayesian Model Mixing 

What is Bayesian Model Averaging?

An application: the overall prediction of EDFs for the neutron drip line

Toy-model test of BMA

The BAND Software Framework
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Bayesian Model Averaging

Used in several other fields

Improves central values and 
coverage properties in 
weather forecasting

pr(Q |D, I) = ∑
M

pr(Q |M, D, I)pr(M |D, I)

Raftery et al. (2005) 

Bayesian Model Averaging: 
marginalize over a discrete 

set of models {M}



Bayesian Model Averaging: some details

Average over models, with weights given by “Bayesian model evidence”

Requires computation of integral over parameter space: cannot be done 
using (standard) MCMC

If set of models {M} includes true model BMA is guaranteed to converge to 
result from that model as more data acquired: M closed

If set of models {M} does not include true model then BMA will converge to 
one with smallest KL divergence: M open 

pr(Q |D, I) = ∑
M

pr(Q |M, D, I)pr(M |D, I)

pr(M |D, I) ∝ pr(D |M, I)pr(M | I)

pr(D |M, I) = ∫ pr(D |θ, M, I)pr(θ |M, I)dθ



BMA+EDF: where is the neutron drip line?

Take 8 Skyrme EDFs: SkM*, SkP,SLy4, SV-min, UNEDF0, UNEDF1, and 
UNEDF2, as well as Gogny functional DIM and functional BCPM, and 
FRDM-2012 and Skyrme-HFB model HFB-24

Each model augmented by Gaussian Process trained to AME2016+ dataset

Mix models according to weights:  for x one 
of the 254 neutron-rich nuclei with no neutron-separation energy 
measured

wk(n) :∝ p[S1n/2n(x) > 0 |ℳk]

Neufcourt et al., PRL (2019); PRC (2020)



Results



Toy model test for Bayesian methods
Given data D={(dk,σk):k=1,...,N} taken at points xk and a fit function 
f(x;a) that depends on LECs a={a0,a1,a2,…}, extrapolate to a target 
point that is either “near” or “far”

BUT, be careful! f only describes data in a limited domain

Schindler, DP, Ann. Phys., 2009; Wesolowski, Klco, Furnstahl, DP, Thapaliya, JPG, 2016
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Toy model test for Bayesian methods
Given data D={(dk,σk):k=1,...,N} taken at points xk and a fit function 
f(x;a) that depends on LECs a={a0,a1,a2,…}, extrapolate to a target 
point that is either “near” or “far”

BUT, be careful! f only describes data in a limited domain

Fit function:  
f(x) = a0 + a1x + a2x2 + … + aMxM

Toy example 1: data from 

g(x) = (1/2 + tan(πx/2))2

What order should 
we take for M?

Schindler, DP, Ann. Phys., 2009; Wesolowski, Klco, Furnstahl, DP, Thapaliya, JPG, 2016



Minimizing χ2 =Least-squares fitting=Uniform prior

Corresponds to not employing any additional information on the 
problem, beyond that provided by the data (including errors)

Similar results up to k=2, not beyond

āfix=5

Wesolowski, Furnstahl, Klco, Phillips, Thapaliya, JPG (2016)

Coefficient extraction



Model evidence & BMA
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M
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Connell, Billig, DP, JPG (2021)



A more docile function

Performance can be quantified using “Empirical Coverage Probability”

g2(x) = ( 1.3
1.3 + x )

2



Conclusions from toy model
In this case both situations are formally “open" but polynomials can describe the 
second case, so BMA works quite well. BMA extrapolate better than highest-
order or highest-evidence model

BMA not a panacea though: BMA does not help dire situation with g1(x) as we 
get close to singularity

Could choose different weights: stacking uses LOO weights

But one defect of BMA is that it uses weights based on global model 
performance. Could also consider locally-defined weights: “Local Bayesian Model 
Mixing”

Locally-defined weights can leverage strengths of models in different regions, 
e.g., mixing expansions in g and 1/g could provide a result (with UQ!) that works 
well for all g Semposki, Furnstahl, DP (2022)



Much progress on Uncertainty Quantification in Nuclear Physics in last few 
years

But still some inhibitions regarding use of Bayesian methods: 

What prior should I choose? 

Isn’t MC sampling too computationally expensive a way to estimate the 
parameters I care about?

Difficult to assess model uncertainty

Proposal: use “Bayesian Model Mixing” to provide error bars that reflect full 
error bar for a nuclear-physics prediction, based on best available Nuclear 
Physics knowledge

Consistently calibrated and mixed nuclear-physics models can then be used for 
optimal design of experiments
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The Team I: Senior Investigators

Ohio U., Daniel Phillips: Nuclear Physics (PI)

Michigan State U., Witek Nazarewicz, Filomena Nunes, Scott Pratt: Physics; Taps 
Maiti, Frederi Viens: Statistics

Northwestern U., Matthew Plumlee: Statistics, Stefan Wild: Computer Science

Ohio State U., Dick Furnstahl, Uli Heinz: Physics, Matthew Pratola, Statistics



The Team II: Students & Post-docs



“BANDifesto”, 
J. Phys. G 48, 

072001 (2021)



Timeline
Year 1: Release of BAND Manifesto; Nuclear-physics codes in repo

Year 2:  Version 1 demo released; POC demos for toy models

Year 3: Version 2 framework released

Years 4 & 5: Mature version of BAND Framework released with 
database; POC demos for experimental planning and forefront 
nuclear theory; tutorial & bootcamp; workshop for other disciplines

Throughout: Roundtables with community, BAND camps, tutorials

Collaboration & input welcomed
https://bandframework.github.io/

Ultimate goal is to build framework that is generally useful



Backup slides



Connecting to ab initio calculations

ANC extracted from capture data: CP1/22+CP3/22=27 ± 3 fm-1

Significant constraints on s-wave scattering parameters already from capture

Short-distance parameter LE1 is smaller for data and for Nollett’s ab-initio based 
calculation than for cluster models. Pauli principle?

Dohet-Eraly et al., PLB (2016)


