Geometry, entanglement and causality in the scattering matrix

Silas Beane

IQuS InQubator for Quantum Simulation

Tanthco Z-seminar April 12, 2022

I will discuss work done at the University of Washington in collaboration with David B. Kaplan, Natalie KIco (Caltech), Martin J. Savage, Roland C. Farrell and Mira Varma (Yale).

$$
\text { Based on: } \quad \text { arXiv:1812.03138 }
$$

Outline

\checkmark Motivation
\checkmark Baryon-baryon scattering
S-matrix entanglement power
\checkmark Geometric theory of the S-matrix

Motivation

Do measures of entanglement provide interesting "new" information about scattering processes?

Can we learn something about few-body interactions at low energies that is solely due to entanglement and may not be captured in effective field theory?

Baryon-baryon scattering

- Baryons are highly-entangled, strongly-coupled, many-body quantum systems
- Baryons at very-low energies are, to first approximation, structureless spin one-half fermions

Nucleon-nucleon scattering

At very-low energies, the unitary NN S-matrix is constrained by Fermi statistics, spin and isospin:

$$
\begin{gathered}
\hat{\mathbf{S}}(p)=\frac{1}{4}\left(3 e^{i 2 \delta_{1}(p)}+e^{i 2 \delta_{0}(p)}\right) \hat{\mathbf{1}}+\frac{1}{4}\left(e^{i 2 \delta_{1}(p)}-e^{i 2 \delta_{0}(p)}\right) \underline{\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\sigma}}} \\
\delta_{0} \in{ }^{1} S_{0} \quad \delta_{1} \in{ }^{3} S_{1}
\end{gathered}
$$

The leading order (LO) EFT `action' for NN scattering at very low energies is constrained by general principles: Galilean invariance, spin, isospin, etc.

$$
\mathcal{L}_{\mathrm{LO}}=-\frac{1}{2} C_{S}\left(N^{\dagger} N\right)^{2}-\frac{1}{2} C_{T}\left(N^{\dagger} \hat{\boldsymbol{\sigma}} N\right) \cdot\left(N^{\dagger} \hat{\boldsymbol{\sigma}} N\right)
$$

NN scattering from EFT:

$$
\begin{gathered}
\hat{T}_{S}=\alpha+\ldots \\
\hat{S}=\hat{\mathbf{1}}+\hat{T}_{S}
\end{gathered}
$$

Why work with the S-matrix?

- We want a unitary operator that characterizes the interaction
- The S-matrix is, in some sense, the most fundamental object for discussing entanglement

$$
C_{T}^{\text {PDS }} / C_{S}^{\mathrm{PDS}}=0.0824 \quad C_{T}=0 \rightarrow S U(4)_{W} \quad 4=\left(\begin{array}{c}
p \uparrow \\
p \nmid \\
n \uparrow \\
n \downarrow
\end{array}\right)
$$

There is a multiplicity of explanations for this:

- \quad Large-N QCD: $\quad S U(4)_{S F} \rightarrow S U(4)_{W}$
- Schrödinger symmetry: $\quad S U(4)_{W}$
- \quad Vanishing spin entanglement? $S U(4)_{W}$

What about strange physics?

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LO}}^{n_{f}=3}= & -c_{1}\left\langle\underline{B_{i}^{\dagger} B_{i} B_{j}^{\dagger} B_{j}}\right\rangle-c_{2}\left\langle\underline{\left.B_{i}^{\dagger} B_{j} B_{j}^{\dagger} B_{i}\right\rangle}\right. \\
& -c_{3}\left\langle\underline{B_{i}^{\dagger} B_{j}^{\dagger} B_{i} B_{j}}\right\rangle-c_{4}\left\langle\underline{B_{i}^{\dagger} B_{j}^{\dagger} B_{j} B_{i}}\right\rangle \\
& -c_{5}\left\langle B_{i}^{\dagger} B_{i}\right\rangle\left\langle B_{j}^{\dagger} B_{j}\right\rangle-c_{6}\left\langle\underline{\left.B_{i}^{\dagger} B_{j}\right\rangle\left\langle B_{j}^{\dagger} B_{i}\right.}\right\rangle
\end{aligned}
$$

Here lattice QCD simulations are needed!

Theory expectations:

- Large-N QCD: $S U(6)_{S F}$

$$
\begin{array}{lll}
c_{1}=-\frac{7}{27} b, & c_{2}=\frac{1}{9} b, & c_{3}=\frac{10}{81} b \\
c_{4}=-\frac{14}{81} b, & c_{5}=a+\frac{2}{9} b, & c_{6}=-\frac{1}{9} b
\end{array}
$$

Schrödinger symmetry: scattering lengths near unitarity? H

- Vanishing spin entanglement?

$$
\begin{gathered}
c_{1}=c_{2}=c_{3}=c_{4}=c_{6}=0 \\
S U(16)_{S F}
\end{gathered}
$$

Lattice QCD agrees with predictions from vanishing entanglement:

$$
S U(16)_{S F}
$$

Need a measure of the entanglement of interaction

- Baryons as qubits

$$
\mathbf{C} \mathbf{P}^{1} \simeq \mathbf{S}^{2} \quad \cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i \phi} \sin \left(\frac{\theta}{2}\right)|\downarrow\rangle
$$

Scattering of qubits

Re-express the S-matrix as:

$$
\begin{gathered}
\hat{\mathbf{S}}=\frac{1}{2}\left(e^{i 2 \delta_{1}}+e^{i 2 \delta_{0}}\right) \hat{\mathbf{1}}+\frac{1}{2}\left(e^{i 2 \delta_{1}}-e^{i 2 \delta_{0}}\right)(\hat{\mathbf{1}}+\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\sigma}}) / 2 \\
\equiv u \hat{\mathbf{1}}+v \mathcal{P}_{12}
\end{gathered}
$$

SWAP:

$$
\mathcal{P}_{12}|p \uparrow\rangle \otimes|n \downarrow\rangle=|p \downarrow\rangle \otimes|n \uparrow\rangle
$$

spin entanglement $\sim|u v| \sim\left|\sin \left(2\left(\delta_{1}-\delta_{0}\right)\right)\right|$

The entanglement power (EP) of the S-matrix gives a stateindependent measure of spin entanglement

$$
\mathcal{E}(\hat{\mathbf{S}})=1-\int \frac{d \Omega_{1}}{4 \pi} \frac{d \Omega_{2}}{4 \pi} \operatorname{Tr}_{1}\left[\hat{\rho}_{1}^{2}\right] \mathcal{P}\left(\Omega_{1}, \Omega_{2}\right) \quad \begin{array}{cc}
\left|\psi_{\text {out }}\right\rangle=\hat{\mathbf{S}}\left|\psi_{\text {in }}\right\rangle \\
\hat{\rho}_{12}=\left|\psi_{\text {out }}\right\rangle\left\langle\psi_{\text {out }}\right| \\
\hat{\rho}_{1}=\operatorname{Tr}_{2}\left[\hat{\rho}_{12}\right]
\end{array}
$$

$$
\mathcal{E}(\hat{\mathbf{S}})=N_{\mathcal{P}} \sin ^{2}\left(2\left(\delta_{1}-\delta_{0}\right)\right)
$$

Do measures of entanglement provide interesting "new" information about scattering processes?

- At threshold, minimization of the EP recovers Wigner symmetry and, in the three-flavor case, the spectral pattern observed in lattice QCD simulations, and a new SU(16) spin-flavor symmetry.

$$
\mathcal{L}_{\mathrm{LO}}^{n_{f}=3} \rightarrow-\frac{1}{2} c_{S}\left(\mathcal{B}^{\dagger} \mathcal{B}\right)^{2} \quad \mathcal{B}=\left(p_{\uparrow}, p_{\downarrow}, n_{\uparrow}, n_{\downarrow}, \Lambda_{\uparrow}, \ldots\right)^{T}
$$

- Beyond threshold, minimization of the EP is observed at NLO in the EFT of NN scattering. However, the structure of the momentum dependence is mysterious...
- The EFT of NN scattering relies on the locality of the spacetime description. Is it possible to obtain the S-matrix from a spacetime-independent geometric formulation?

S-matrix basics

Consider single-channel s-wave scattering

$$
S=e^{i 2 \delta(k)}=1-i \frac{k M}{2 \pi} T(k)
$$

Very near threshold the scattering length dominates

$$
T(k)=\frac{4 \pi}{M} \frac{a}{1+i a k} \quad S(k)=\frac{1-i a k}{1+i a k} \quad \text { Trivial and unitary fixed points: }
$$

S has symmetries that are NOT symmetries of T

$$
k \mapsto e^{\beta} k \quad a \mapsto e^{-\beta} a
$$

UVIIR: $\quad k \mapsto \frac{1}{a^{2} k}$

$$
\delta(k) \mapsto-\delta(k) \pm \frac{\pi}{2} \quad, \quad S \rightarrow-S^{*}
$$

Consider RG flow of EFT contact operator coupling

$$
C_{0}(\omega)=\frac{4 \pi}{M} \frac{1}{1 / a-\omega}
$$

The beta function exhibits the two RG fixed points

$$
\hat{\beta}\left(\hat{C}_{0}\right)=\omega \frac{d}{d \omega} \hat{\omega}_{0}(\omega)=-\hat{C}_{0}(\omega)\left(\hat{C}_{0}(\omega)-1\right) \quad \hat{C}_{0} \equiv C_{0} / C_{0 *}
$$

And is manifestly invariant w.r.t. the UV/IR symmetry

$\hat{C}_{0}(\omega) \leftrightarrow 1-\hat{C}_{0}(\omega)$

Geometry of the S-matrix

In NN s-wave scattering, there are four RG fixed points

$$
\begin{array}{ll}
\hat{\mathbf{S}}_{(1)}=+\hat{\mathbf{1}} & \hat{\mathbf{S}}_{(3}=+(\hat{\mathbf{1}}+\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\sigma}}) / 2 \\
\hat{\mathbf{S}}_{(2)}=-\hat{\mathbf{1}} & \hat{\mathbf{S}}_{(4)}=-(\hat{\mathbf{1}}+\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\sigma}}) / 2
\end{array}
$$

They realize the Klein four-group: $\quad \mathbb{Z}_{2} \otimes \mathbb{Z}_{2}$
This is the symmetry group of the rhombus

At leading order (LO) in the ERE

$$
u(p)=\frac{1}{2}\left(\frac{1-i a_{1} p}{1+i a_{1} p}+\frac{1-i a_{0} p}{1+i a_{0} p}\right) \quad, \quad v(p)=\frac{1}{2}\left(\frac{1-i a_{1} p}{1+i a_{1} p}-\frac{1-i a_{0} p}{1+i a_{0} p}\right)
$$

Geometry of the S-matrix

S-matrix coordinates:

$$
\begin{gathered}
\hat{\mathbf{S}}=u(p) \hat{\mathbf{1}}+v(p)(\hat{\mathbf{1}}+\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\sigma}}) / 2 \\
u(p)=x(p)+i y(p) \quad v(p)=z(p)+i w(p)
\end{gathered}
$$

Unitarity:
$\hat{\mathbf{S}}^{\dagger} \hat{\mathbf{S}}=\hat{\mathbf{1}} \quad \begin{aligned} & 1=x^{2}+y^{2}+z^{2}+w^{2} \\ & 0=x z+y w\end{aligned} S^{3}$

Parametric representation:

$$
\begin{array}{cl}
x=\frac{1}{2} r[\cos (\phi)+\cos (\theta)] & y=\frac{1}{2} r[\sin (\phi)+\sin (\theta)] \\
z=\frac{1}{2} r[-\cos (\phi)+\cos (\theta)] & w=\frac{1}{2} r[-\sin (\phi)+\sin (\theta)]
\end{array} \quad \begin{aligned}
& \phi \equiv 2 \delta_{0} \\
& \theta \equiv 2 \delta_{1} \\
& \phi \in[0,2 \pi] \quad \theta \in[0,2 \pi] \quad r=1
\end{aligned}
$$

Isotropic S-matrix coordinates can be embedded in four-dimensional Euclidean space \mathbb{R}^{4}

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}+d w^{2}
$$

Compact Riemannian manifold: flat torus

$$
d s^{2}=\frac{1}{2}\left(d \phi^{2}+d \theta^{2}\right)
$$

$$
\mathbb{T}^{2} \sim S^{1} \otimes S^{1}
$$

$$
\begin{aligned}
& \phi \in[0,2 \pi] \\
& \theta \in[0,2 \pi]
\end{aligned}
$$

Geometry of the flat torus

Isometry group is:

$$
\begin{gathered}
S O(2) \otimes S O(2) \otimes \mathbb{Z}_{2}^{6} \\
\begin{array}{|c|c|}
\hline \phi \mapsto \phi+\epsilon & \theta \mapsto \theta+\epsilon \\
\phi \mapsto \phi+\epsilon & \theta \mapsto \theta-\epsilon \\
\hline
\end{array} \\
\begin{array}{c|c}
\hline \phi \mapsto \pi-\phi & \theta \mapsto \pi-\theta \\
\phi \mapsto-\phi & \theta \mapsto-\theta \\
\phi \mapsto \theta & \theta \mapsto \phi \\
\phi \mapsto-\theta & \theta \mapsto-\phi \\
\phi \mapsto \pi-\theta & \theta \mapsto \pi-\phi \\
\phi \mapsto \pi+\theta & \theta \mapsto \pi+\phi \\
\hline
\end{array}
\end{gathered}
$$

With vanishing entanglement power there is no manifold:
2D surface is a lattice with fixed points as vertices and special geodesics as links

$$
\mathcal{E}(\hat{\mathbf{S}})=N_{\mathcal{P}} \sin ^{2}(\phi-\theta)
$$

Trajectories on a Riemannian manifold are governed by the action

$$
\int L(\mathcal{X}, \dot{\mathcal{X}}) d \sigma=\int\left(\mathbf{N}^{-2} g_{a b} \dot{\mathcal{X}}^{a} \dot{\mathcal{X}}^{b}-\mathbb{V}(\mathcal{X})\right) \mathbf{N} d \sigma
$$

Minimizing the action gives geodesics modified by a conservative force

$$
\ddot{\mathcal{X}}^{a}+{ }_{g} \Gamma^{a}{ }_{b c} \dot{\mathcal{X}}^{b} \dot{\mathcal{X}}^{c}=\kappa(\sigma) \dot{\mathcal{X}}^{a}-\frac{1}{2} \mathbf{N}^{2} g^{a b} \partial_{b} \mathbb{V}(\mathcal{X})
$$

$$
\kappa(\sigma) \equiv \frac{\dot{\mathbf{N}}}{\mathbf{N}}=\frac{d}{d \sigma} \ln \frac{d \lambda}{d \sigma} \quad \text { "inaffinity" }
$$

On the flat torus

$$
\mathcal{X}^{1}=\phi \quad \mathcal{X}^{2}=\theta \quad \hat{g}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Consider leading-order in the effective-range expansion vs data

$$
\phi=-2 \tan ^{-1}\left(a_{0} p\right) \quad \theta=-2 \tan ^{-1}\left(a_{1} p\right)
$$

Leading-order is exactly solvable with "potential"

$$
\mathbb{V}(\phi, \theta)=\frac{\left|a_{0} a_{1}\right|}{\left(\left|a_{0}\right|+\left|a_{1}\right|\right)^{2} c_{1}^{2}} \tan ^{2}\left(\frac{1}{2}(\phi+\epsilon \theta)\right)
$$

Note UV/IR symmetry

$$
p \mapsto \frac{1}{\left|a_{1} a_{0}\right| p}
$$

Conformal invariance!

Equi-potential surfaces

$$
\mathbb{V}(\phi, \theta)=\frac{\left|a_{0} a_{1}\right|}{\left(\left|a_{0}\right|+\left|a_{1}\right|\right)^{2} c_{1}^{2}} \tan ^{2}\left(\frac{1}{2}(\phi+\epsilon \theta)\right)
$$

Equi-entanglement surfaces

UVIIR symmetry!

$$
p \mapsto \frac{1}{\left|a_{1} a_{0}\right| p}
$$

$$
\mathcal{E}(\hat{\mathbf{S}})=N_{\mathcal{P}} \sin ^{2}(\phi-\theta)
$$

Causality on the flat torus (Wigner bounds)

$$
r \leq 2\left[\mathbf{R}-\frac{\mathbf{R}^{2}}{a}+\frac{\mathbf{R}^{3}}{3 a^{2}}\right]
$$

Causal trajectories are geometrically constrained

$$
\dot{\phi}(p) \geq \frac{\sin \phi(p)}{p} \quad, \quad \dot{\theta}(p) \geq \frac{\sin \theta(p)}{p}
$$

Inelasticity and holography

Now allow inelastic loss

$$
\hat{\mathbf{S}}_{I} \hat{\mathbf{S}}_{I}=\hat{\mathbf{S}}^{\prime} \hat{\mathbf{s}}-\sum_{\gamma}|\gamma\rangle\langle\gamma|
$$

Assumption: both channels couple to single source

$$
\begin{aligned}
& \exp 2 i \delta_{0} \rightarrow \eta_{0} \exp 2 i \delta_{0} \\
& \exp 2 i \delta_{1} \rightarrow \eta_{1} \exp 2 i \delta_{1}
\end{aligned} \quad \Longrightarrow \quad \begin{gathered}
S U(4)_{W} \\
\eta_{0}=\eta_{1}=r
\end{gathered}
$$

Embedding in four-dimensional Euclidean space \mathbb{R}^{4}

$$
d s^{2}=d r^{2}+\frac{1}{2} r^{2}\left(d \phi^{2}+d \theta^{2}\right)
$$

This is a hyperbolic space with curvature and Einstein tensor

$$
R=-\frac{2}{r^{2}} \quad G_{i j}=\frac{1}{r^{2}} \delta_{i}^{1} \delta_{j}^{1}
$$

There is a singularity at the maximal violation of unitarity

The trajectory equations are:

$$
\begin{aligned}
& \ddot{r}=\hat{\kappa}(p) \dot{r}+\frac{1}{2} r\left[(\dot{\phi})^{2}+(\dot{\theta})^{2}\right]-\frac{1}{2} \hat{N}^{2} \partial_{r} \hat{\mathbb{V}} \\
& \ddot{\phi}=\hat{\kappa}(p) \dot{\phi}-2 \dot{\phi} \frac{\dot{r}}{r}-\hat{N}^{2} \frac{1}{r^{2}} \partial_{\phi} \hat{\mathbb{V}} \\
& \ddot{\theta}=\hat{\kappa}(p) \dot{\theta}-2 \dot{\theta} \frac{\dot{r}}{r}-\hat{N}^{2} \frac{1}{r^{2}} \partial_{\theta} \hat{\mathbb{V}}
\end{aligned}
$$

Is it possible to engineer a bulk potential which will reproduce LO in the effective range expansion while allowing for inelastic lossiness?

Yes, but with an intrinsic error

$$
\hat{\mathbb{V}}(r, \phi, \theta)=\frac{1}{r^{2}} \mathbb{V}(\phi, \theta)=\frac{\left|a_{0} a_{1}\right|}{\left(\left|a_{0}\right|+\left|a_{1}\right|\right)^{2}} \frac{1}{r^{2}} \tan ^{2}\left(\frac{1}{2}(\phi+\epsilon \theta)\right)
$$

$$
r(p)=\cos \left(\mathcal{A} \frac{1}{2}\left(\phi_{\max }-\epsilon \theta_{\max }\right)\right) \sec \left(\mathcal{A}\left[(\phi(p)-\epsilon \theta(p))-\frac{1}{2}\left(\phi_{\max }-\epsilon \theta_{\max }\right)\right]\right)
$$

The flat torus is the boundary of the hyperbolic space

In usual holographic duality, CFT on the boundary is unitary. Here the boundary is in some sense unitarity itself.

Summary

- In baryon-baryon scattering, minimization of the EP implies new symmetries in the strange sector which simplify the effective field theory. Lattice QCD simulations agree with these predictions. Entanglement constrains scattering.
- Fermion-Fermion (qubit-qubit) scattering has a geometric formulation in which the S-matrix propagates in a theory space generated by entanglement and bounded by unitarity. With inelastic loss, it is a simple toy model of holography.
- Minimization of the EP in pion-pion (qutrit-qutrit) and pion -nucleon (qubit-qutrit) scattering leads to consequences that are indistinguishable from large- N QCD implications.

