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and Galilean invariance, can be put in the form[8]

LLO = �
1

2
CS(N †

N)2 �
1

2
CT

⇣
N

†�̂N

⌘
·

⇣
N

†�̂N

⌘
, (1.1)

where N represents both spin states of the proton and neutron fields and �̂↵ are the Pauli spin

matrices. These interactions can be re-expressed as contact interactions in the 1
S0 and 3

S1

channels with couplings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively, where the two cou-

plings are fit to reproduce the 1
S0 and 3

S1 scattering lengths. Higher-order operators involve

derivatives acting on the nucleon fields and give rise to e↵ective range and shape-parameter

corrections. The interactions of Eq. (1.1) are highly singular. Defining the couplings in di-

mensional regularization with the PDS scheme [4, 5], and choosing the renormalization scale

to be the pion mass, one finds C
PDS

T /C
PDS

S = 0.0824. This well-known suppression of the

spin-entangling operator that appears at LO in the EFT expansion has motivated the study

of entanglement in (hyper)nuclear systems [9], as a measure of the degree of entanglement of

interaction operators in the EFT would appear to be required.

Forget now about the EFT description and consider a direct construction of the nucleon-

nucleon S-matrix. At low energies, neutrons and protons, with two spin degrees of freedom

each, scatter via the phase shifts �0,1, in the 1
S0 and 3

S1 channels, respectively, with projec-

tions onto higher angular momentum states suppressed by powers of the nucleon momenta.

Neglecting the small tensor-force-induced mixing of the 3
S1 channel with the 3

D1 channel, the

S-matrix for nucleon-nucleon scattering below inelastic threshold can be decomposed as

Ŝ(p) =
1

4

⇣
3e

i2�1(p) + e
i2�0(p)

⌘
1̂ +

1

4

⇣
e
i2�1(p)

� e
i2�0(p)

⌘
�̂ · �̂, (1.2)

where in the direct-product space of the nucleons spins,

1̂ ⌘ Î2 ⌦ Î2 , �̂ · �̂ ⌘

3X

↵=1

�̂↵
⌦ �̂↵

, (1.3)

with I2 the 2⇥2 unit matrix. It is important to stress that this decomposition of the S-matrix

follows from unitarity, the symmetries of the system, and from the fact that the nucleons are

fermions. The standard procedure for obtaining the phase shifts is to compute the scattering

amplitude using the EFT. In this paper, a new method will be developed for obtaining the

phase shifts, which does not rely on a spacetime picture involving local operators. Several

issues immediately present themselves and will be discussed in turn.

First, the S-matrix in Eq. (1.2) is expressed as a function of the momentum variable p

(which we take throughout as the center-of-mass momentum). The momentum variable arises

naturally in the spacetime picture and the dependence of the phase shifts on momentum is

determined by the expansion in local operators. In a spacetime-independent description of

scattering the choice of the momentum as the variable is necessarily arbitrary, and indeed

it will turn out that the choice of variable is related to the choice of parameterization of

trajectories on a Riemmanian manifold.
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forces, they cannot be neglected and become more im-
portant with increasing density. To understand whether
entanglement suppression dictates approximate SU(16)
symmetry in these interactions as well, we take a more
general approach rather than computing the multi-
baryon S-matrix in various channels to constrain cou-
plings. We begin by assuming exact SU(2)spin ⇥
SU(3)flavor symmetry, where corrections due to SU(3)
violation from quark mass di↵erences can be incorpo-
rated in the usual way. Even in the degenerate quark
mass limit, this means restricting ourselves to consider-
ing only interactions that do not couple spin to orbital
angular momentum. While such spin-orbit and tensor
interactions can be important in heavy nuclei, they are
suppressed by powers of the baryon momenta and do not
enter the IR limit of the e↵ective theory. It is then argued
that entanglement suppression requires the interactions
to respect a U(1)16 symmetry, conserving particle num-
ber individually for each of the octet baryon spin states.
To see why this is a reasonable assumption, consider a
1-body operator (which need not be local) that violates
the U(1)16 symmetry, e.g.,

⇥̂ =

Z
d3vd3u

⇥
f(v�u)↵†

v�u+h.c.
⇤
, (8)

where ↵,� are annihilation operators for components of
B with ↵ 6= �, u and v are spatial coordinates and f is
a form factor. This operator implements the transforma-
tion, e.g.,

⇥̂|↵x,�y, �zi =
Z

d3w
⇥
f(w � y)|↵x,↵w, �zi

+ f⇤(x�w)|�w,�y, �zi
⇤
,(9)

producing an entangled state, even if f(x� y) = �3(x�
y), from which it can be concluded that the U(1)16 sym-
metry is a necessary condition to forbid entangling inter-
actions 3. It follows from simultaneous exact SU(2) ⇥
SU(3) and U(1)16 symmetries that the LO EFT must
respect the full SU(16) symmetry by the following ar-
gument. The charges Q↵ = B†�↵B that by assumption
commute with the Hamiltonian H consist of

�↵ 2 {I16, Si ⌦ I8, I2 ⌦ ta, Mi} , (10)

where S1,2,3 2 su(2) are the fundamental generators of
SU(2), ta 2 su(3) with (ta)bc = �ifabc for a, b, c = 1, ..., 8
are the generators of the SU(3) adjoint representation
with structure constants fabc, and the Mi for i = 1, ..., 15
are a set of independent diagonal traceless 16⇥16 matri-
ces generating U(1)15, the ignored U(1) symmetry being
baryon number. Since all of the above Q↵ are assumed

3 The converse is not true: it is possible to show that there exist
entangling interactions which preserve U(1)16 symmetry [52].

to commute with H, it follows that their commutators do
as well. The full symmetry of H will be the symmetry
group generated by the closure of the Q↵ under commu-
tation. By making use of the fact that the ta generate
an irreducible representation of the su(3) Lie algebra and
invoking Schur’s Lemma, it is possible to show that this
full symmetry algebra is su(16) [52].
Conjecturing that the guiding principle for low-energy

nuclear and hypernuclear forces is the suppression of en-
tanglement fluctuations provides important theoretical
constraints on dense matter systems. The Lagrange den-
sity describing the nf = 2 sector with vanishing entangle-
ment power, and therefore SU(4) spin-flavor symmetry,
is

L(nf=2) = �
4X

n=2

1

n!
C(n)

S

�
N†N

�n
, (11)

while for nf = 3 with SU(16) spin-flavor symmetry,

L(nf=3) = �
16X

n=2

1

n!
c(n)S

�
B†B

�n
. (12)

Calculations of hypernuclei and hyperon-nucleon interac-
tions imposing SU(16) spin-flavor symmetry on the low-
energy forces are now in progress [65]. Our work suggests
that such calculations could probe the nature of entan-
glement in strong interactions.
The Pauli exclusion principle’s requirement of anti-

symmetrization produces a natural tendency for highly
entangled states of identical particles in the s-channels.
It is somewhat perplexing how to understand the result
that the S-matrix for baryon-baryon scattering exhibits
screening of entanglement power when the quarks and
gluons that form the nucleon are highly entangled. It
may be the case that the nonperturbative mechanisms
of confinement and chiral symmetry breaking together
strongly screen entanglement fluctuations in the low-
energy sector of QCD beyond what can be identified in
the large-Nc limit of QCD.
While our work has focused on low-energy interac-

tions, preliminary evidence for entanglement suppression
at higher orders in a derivative expansion is seen in the
nf = 2 low-energy constants (LECs) for operators up to
NNLO. The contact terms of the two-nucleon potential
in the center-of-mass frame are [66]

Vcontact = CS + CT ~�1 · ~�2 + V (2)

contact
, (13)

V (2)

contact
= C1 ~q

2 + C3 ~q
2(~�1 · ~�2) + C6 (~q · ~�1)(~q · ~�2) ,

with ~q = ~p 0 � ~p and ~p, ~p 0 the initial and final nu-
cleon momenta. Calculating their entanglement power,
it is expected that CT , C3, and C6 will be suppressed at
low energies. Numerical values of these potential coef-
ficients are determined from the values of the spectro-
scopic LECs [67–69] (see Fig. 1 of the supplementary
material). At small values of the maximum scattering
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and Galilean invariance, can be put in the form[8]

LLO = �
1

2
CS(N †

N)2 �
1

2
CT

⇣
N

†�̂N

⌘
·

⇣
N

†�̂N

⌘
, (1.1)

where N represents both spin states of the proton and neutron fields and �̂↵ are the Pauli spin

matrices. These interactions can be re-expressed as contact interactions in the 1
S0 and 3

S1

channels with couplings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively, where the two cou-

plings are fit to reproduce the 1
S0 and 3

S1 scattering lengths. Higher-order operators involve

derivatives acting on the nucleon fields and give rise to e↵ective range and shape-parameter

corrections. The interactions of Eq. (1.1) are highly singular. Defining the couplings in di-

mensional regularization with the PDS scheme [4, 5], and choosing the renormalization scale

to be the pion mass, one finds C
PDS

T /C
PDS

S = 0.0824. This well-known suppression of the

spin-entangling operator that appears at LO in the EFT expansion has motivated the study

of entanglement in (hyper)nuclear systems [9], as a measure of the degree of entanglement of

interaction operators in the EFT would appear to be required.

Forget now about the EFT description and consider a direct construction of the nucleon-

nucleon S-matrix. At low energies, neutrons and protons, with two spin degrees of freedom

each, scatter via the phase shifts �0,1, in the 1
S0 and 3

S1 channels, respectively, with projec-

tions onto higher angular momentum states suppressed by powers of the nucleon momenta.

Neglecting the small tensor-force-induced mixing of the 3
S1 channel with the 3

D1 channel, the

S-matrix for nucleon-nucleon scattering below inelastic threshold can be decomposed as

Ŝ(p) =
1

4

⇣
3e

i2�1(p) + e
i2�0(p)

⌘
1̂ +

1

4

⇣
e
i2�1(p)

� e
i2�0(p)

⌘
�̂ · �̂, (1.2)

where in the direct-product space of the nucleons spins,

1̂ ⌘ Î2 ⌦ Î2 , �̂ · �̂ ⌘

3X

↵=1

�̂↵
⌦ �̂↵

, (1.3)

with I2 the 2⇥2 unit matrix. It is important to stress that this decomposition of the S-matrix

follows from unitarity, the symmetries of the system, and from the fact that the nucleons are

fermions. The standard procedure for obtaining the phase shifts is to compute the scattering

amplitude using the EFT. In this paper, a new method will be developed for obtaining the

phase shifts, which does not rely on a spacetime picture involving local operators. Several

issues immediately present themselves and will be discussed in turn.

First, the S-matrix in Eq. (1.2) is expressed as a function of the momentum variable p

(which we take throughout as the center-of-mass momentum). The momentum variable arises

naturally in the spacetime picture and the dependence of the phase shifts on momentum is

determined by the expansion in local operators. In a spacetime-independent description of

scattering the choice of the momentum as the variable is necessarily arbitrary, and indeed

it will turn out that the choice of variable is related to the choice of parameterization of

trajectories on a Riemmanian manifold.

– 3 –

! SU(4)W
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Is this an approximate symmetry of nature?

Predicts equal scattering lengths for 1S0 , 3S1   NN scattering lengths

1S0 scattering length =  -23.7 fm ~ 1/8 MeV

3S1 scattering length =  + 5.4 fm ~ 1/35 MeV

A ' 4⇡

M

1⇣
� 1

a + i
p
ME

⌘

very small for both

Better diagnostic: accidental SU(4)Wigner symmetry

1. Implications of spin-flavor symmetry in effective nuclear forces

Short distance nuclear forces relevant for low energy processes can be incorporated

into chiral Lagrangians in terms of local operators in a derivative expansion [1,2]. There

are two leading (dimension six) operators involving nucleons alone, given by

L6 = −1
2CS(N †N)2 − 1

2CT (N †!σN)2 (1.1)

where N are isodoublet two-component spinors, and the !σ are Pauli matrices. Higher

derivative operators account for the spin-orbit coupling, among other effects1. Including

the ∆ isobars in the theory leads to 18 independent dimension six operators allowed by spin

and isospin symmetry2. In order to discuss hypernuclei, or strangeness in dense matter,

one must consider SU(3) flavor multiplets — there are six independent leading operators

involving the baryon octet alone [3], while including the decuplet inflates the number to 28

independent operators. The number of independent dimension seven interactions is still

much greater.

Clearly, to make headway in a systematic effective field theory analysis of nuclear and

hypernuclear forces, it is desirable to find some simplifying principle. In this letter we

propose that among the baryon interactions, SU(4) spin-flavor symmetry for two flavors,

or SU(6) symmetry for three flavors should be a good approximation. We show how these

symmetries have a vastly simplifying effect on the dimension six interactions described

above, reducing both the 18 N−∆ interactions and the 28 octet-decuplet interactions down

to just two independent operators. We support our allegation that spin-flavor symmetry is

relevant to nuclear forces first by outlining its implications and by giving empirical evidence

in support of SU(4) in nuclei. Then we prove that these symmetries become exact in the

large-N limit of QCD.

1 In low energy nucleon-nucleon scattering the higher derivative terms will be less important

than the leading operator. However, many-body effects in large nuclei can enhance the importance

of subleading operators, such as the spin-orbit interaction.
2 It is simplest to count operators in the form (ψ1ψ2)(ψ3ψ4)

†, requiring (ψ1ψ2) and (ψ3ψ4) to

have the same spin and isospin quantum numbers. One finds the above two (NN)(NN)† operators;

zero operators of the form (NN)(N∆)†; two (NN)(∆∆)†, four (N∆)(N∆)†, two (N∆)(∆∆)†,

and eight (∆∆)(∆∆)† operators.

1

X 4 =

0

BB@

p "
p #
n "
n #

1

CCACT = 0
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SU(6) prediction:
c1 = � 7
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L = �c1TrB
†
iBiB

†
jBj � c2TrB

†
iBjB

†
jBi � c3TrB

†
iB

†
jBiBj

�c4TrB
†
iB

†
jBjBi � c5TrB

†
iBiTrB

†
jBj � c6TrB

†
iBjTrB

†
jBi

Does this work?  Look at lattice data 
• NPLQCD collaboration, 2015 
• equal quark masses 
• mπ = 806 MeV
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FIG. 2. Density plot of the entanglement power E(Ŝ) of
the S-matrix (see Eq. (20) of the supplemental material) inte-
grated over center of mass momenta 0  p  m⇡/2, versus the
Lagrangian couplings C0/C? and C1/C? where C? is the crit-
ical coupling for unitary scattering. The entanglement power
vanishes at the four conformal fixed-points (white points), as
well as the fixed line corresponding to Wigner SU(4) symme-
try (white diagonal).

gence of SU(4) symmetry (but not necessarily conformal
symmetry) follows from the large-Nc expansion where
CT /CS = O(1/N2

c ) [6].
The symmetry points of the EFT can be related to

minimization of the entanglement power of the S-matrix.
Fig. 2 shows a density plot of E(Ŝ) as computed from
Eq. (4) averaged over momenta 0  p  m⇡/2, as a
function of the couplings C0,1 renormalized at µ = m⇡/2
and rescaled by C?. Superimposed in white are the four
conformal fixed points, as well as as the Wigner SU(4)
fixed line. The minima of the entanglement power of the
S-matrix (E(Ŝ) = 0) coincide with the points of enhanced
symmetry in the EFT; the SU(4) line corresponds to
�0 = �1 for all momenta, while the conformal points o↵
the SU(4) line correspond to |�0 � �1| = ⇡/2.

In the nf = 2 case, the large-Nc expansion gives a
similar expectation for SU(4) symmetry as does a princi-
ple of entanglement suppression. However, an analogous
equivalence does not hold for nf = 3, as the large-Nc

expansion predicts the conventional approximate SU(6)
spin-flavor symmetry, while entanglement suppression
predicts a much larger SU(16) symmetry under which
the two spin states of the baryon octet transform as a
16-dimensional representation. To see this, consider the
EFT in the SU(3) flavor symmetry limit of QCD, where
six independent contact operators contribute at LO [11],

Lnf=3

LO
= �c1hB†

iBiB
†
jBji � c2hB†

iBjB
†
jBii

�c3hB†
iB

†
jBiBji � c4hB†

iB
†
jBjBii

�c5hB†
iBiihB†

jBji � c6hB†
iBjihB†

jBii , (5)

where h...i denotes a trace in flavor space, and Bi is the

3 ⇥ 3 octet-baryon matrix where the subscript i = 1, 2
denotes spin. Lnf=3

LO
is invariant under rotations and the

transformation B ! V BV † where V is an SU(3) matrix.
In the large-Nc limit of QCD, an SU(6) spin-flavor sym-
metry emerges relating the six coe�cients ci in Eq. (5)
to two independent coe�cients a, b [6] in the SU(6) in-
variant Lagrange density,

c1 = � 7

27
b , c2 =

1

9
b , c3 =

10

81
b ,

c4 = �14

81
b , c5 = a +

2

9
b , c6 = �1

9
b . (6)

A comprehensive set of lattice QCD calculations of light
nuclei, hypernuclei and low-energy baryon-baryon scat-
tering in the limit of SU(3) flavor symmetry by the
NPLQCD collaboration [19, 61, 62] demonstrates that
the ci are consistent with this predicted SU(6) spin-flavor
symmetry [19]. The two-baryon sector calculated with
m⇡ ⇠ 800 MeV is found to be unnatural [19, 61, 62],
with a scattering length that is larger than the range of
the interaction, and hence better described by the power-
counting of van Kolck [63] and KSW [58, 59, 64]. Further,
the values of c1, c2, c3, c4 and c6 are calculated to be much
smaller than c5, indicating that b ⌧ a [19, 61, 62]. When
b = 0, the SU(6) is enlarged to an emergent SU(16) spin-
flavor symmetry [19], where the baryon states populate
the fundamental of SU(16),

Lnf=3

LO
!�1

2
cS

�
B†B

�2 B = (p",p#,n",n#,⇤",...)
T , (7)

with cS = 2c5.
The existence of SU(16) symmetry and b = 0 does

not follow from the large-Nc expansion, but does follow
from entanglement suppression. The entanglement power
of the S-matrix in spin-space from the nf = 3 interac-
tions in Eq. (5) can be addressed by considering its ac-
tion on states of distinguishable baryons. Computing the
entanglement power E(Ŝ) for more than six distinct two-
baryon channels with nonidentical particles—e.g., ⇤N ,
⌅�p—shows that zero entanglement power occurs at the
SU(16) point where all the cn couplings vanish except
for c5, which is unconstrained (and all LO scattering ma-
trices in the J = 0 and J = 1 mixed-flavor sectors are
diagonal [11, 19]). Thus, the principle of entanglement
suppression gives rise to an approximate symmetry, ap-
parent in lattice QCD calculations [19, 61, 62], that does
not follow from the large-Nc limit. We conclude that
the large-Nc limit of QCD does not provide a su�ciently
stringent constraint to produce a low-energy EFT that
does not entangle, which could not be deduced from the
nf = 2 sector alone [6]. Thus, the entanglement power
of the S-matrix appears to be a dominant ingredient in
dictating the properties and relative size of interactions
in low-energy nuclear and hypernuclear systems.
While in nuclei and hypernuclei contributions to bind-

ing from three-body forces between nucleons and hy-
perons are small compared with those from two-baryon

c1 = c2 = c3 = c4 = c6 = 0
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The interactions between two octet baryons are studied at low energies using lattice Quan-
tum Chromodynamics (LQCD) with larger-than-physical quark masses corresponding to a
pion mass of m⇡ ⇠ 450 MeV and a kaon mass of mK ⇠ 596 MeV. The two-baryon systems
that are analyzed range from strangeness S = 0 to S = �4 and include the spin-singlet and
triplet NN , ⌃N (I = 3/2), and ⌅⌅ states, the spin-singlet ⌃⌃ (I = 2) and ⌅⌃ (I = 3/2)
states, and the spin-triplet ⌅N (I = 0) state. The corresponding s-wave scattering phase
shifts, low-energy scattering parameters, and binding energies when applicable, are extracted
using Lüscher’s formalism. While the results are consistent with most of the systems being
bound at this pion mass, the interactions in the spin-triplet ⌃N and ⌅⌅ channels are found
to be repulsive and do not support bound states. Using results from previous studies of
these systems at a larger pion mass, an extrapolation of the binding energies to the physical
point is performed and is compared with available experimental values and phenomenologi-
cal predictions. The low-energy coefficients in pionless effective field theory (EFT) relevant
for two-baryon interactions, including those responsible for SU(3) flavor-symmetry break-
ing, are constrained. The SU(3) flavor symmetry is observed to hold approximately at the
chosen values of the quark masses, as well as the SU(6) spin-flavor symmetry, predicted at
large Nc. A remnant of an accidental SU(16) symmetry found previously at a larger pion
mass is further observed. The SU(6)-symmetric EFT constrained by these LQCD calcula-
tions is used to make predictions for two-baryon systems for which the low-energy scattering
parameters could not be determined with LQCD directly in this study, and to constrain the
coefficients of all leading SU(3) flavor-symmetric interactions, demonstrating the predictive
power of two-baryon EFTs matched to LQCD.

PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.-t, 21.30.Fe, 13.75.Cs, 13.75.Ev.

I. INTRODUCTION

Hyperons (Y ) are expected to appear in the interior of neutron stars [1], and unless the strong inter-
actions between hyperons and nucleons (N) are sufficiently repulsive, the equation of state (EoS) of
dense nuclear matter will be softer than for purely non-strange matter, leading to correspondingly
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FIG. 11. The predicted (filled markers) LO SU(3) coefficients c(irrep) (upper panels), as well as Savage-
Wise coefficients ci (lower panels) reconstructed from the SU(6) relations are compared with the directly-
extracted LECs (empty markers) under the assumption of natural (left panels) and unnatural (right panels)
interactions, in units of [ 2⇡

MB
], where MB is the centroid of the octet-baryon masses. The gray-circle symbols

denote quantities that have been extracted using the scattering parameters obtained from the ERE fit
(method I), while black-square symbols denote those that are obtained from scattering lengths constrained
by binding momenta (method II). The hashed background in the upper panels denotes coefficients whose
values were used to constrain a and b, and hence are not predictions.

which the ERE allowed a direct extraction of this parameter, while it provides predictions for the
channels shown in Table XIV. For the case of natural interactions, the scattering lengths are not
constrained well, although they are consistent within uncertainties with those in the unnatural case,
demonstrating the renormalization-scale independence of the scattering length. For the unnatural
case, both methods are consistent and give rise to inverse scattering lengths that are positive and
larger than those obtained for the rest of the systems studied in this work. This is in agreement with
the parameters found when fitting the results for k⇤ cot � in these channels beyond the t-channel
cut, see Table V.

IV. CONCLUSIONS

Nuclear and hypernuclear interactions are key inputs into investigations of the properties of matter,
and their knowledge continues to be limited in systems with multiple neutrons or when hyperons
are present. In recent years, LQCD has reached the stage where controlled first-principles studies
of nuclei are feasible, and may soon constrain nuclear and hypernuclear few-body interactions in
nature. The present work demonstrates such a capability in the case of two-baryon interactions,
albeit at an unphysically large value of the quark masses corresponding to a pion mass of ⇠ 450
MeV. It illustrates how Euclidean two-point correlation functions of systems with the quantum
numbers of two baryons computed with LQCD can be used to constrain a wealth of quantities,
from scattering phase shifts to low-energy scattering parameters and binding energies, to EFTs

30

Case c1 c2 c3 c4 c5 c6

Unnatural 0.051(+53)
(�64) 0.073(+64)

(�54) 0.088(+53)
(�55) 0.088(+58)

(�55) 1.892(+59)
(�50) �0.013(+54)

(�63)

Natural 5(+17)
(�12) 7(+16)

(�13) 5(+12)
(�8) 5(+11)

(�12) �19(+12)
(�17) �4(+14)

(�16)

1

TABLE VI: Values of the coefficients of the LO SU(3)-symmetric interactions obtained by solving Eqs. (29)-
(34) for the unnatural case with µ = m⇡, and for the natural case with µ = 0. The coefficients are expressed
in units of [ 2⇡

MB
], with MB being the baryon mass in this calculation, expressed in lattice units.

in the 8S and 1 irreps, and provides further constraints on the SW coefficients,

(�
2c1
3

+
2c2
3

�
5c3
6

+
5c4
6

+ c5 � c6)
�1

� µ = �0.08(4) l.u. (33)

(�
c1
3

+
c2
3

�
8c3
3

+
8c4
3

+ c5 � c6)
�1

� µ = �0.08(4) l.u. (34)

Setting µ = 0 recovers the results for natural systems.
Eqs. (29)-(34) are solved to determine all six SW coefficients for unnatural interactions within the

KSW-vK power counting at a renormalization scale of µ = m⇡, and for natural interactions through
a tree-level expansion of the scattering amplitude, see Table VI. As is evident from these values,
shown in Fig. 16, the unnatural scenario provides the most stringent constraints on the coefficients.
In this case, the value of all SW coefficients except for c5 are consistent with zero, a manifestation
of the SU(16) spin-flavor symmetry in the LO SU(3) interactions, i.e., the a � b/3 hierarchy in
the SU(6) spin-flavor symmetric interactions. With these results, and the binding energies of light
hypernuclei [20], ongoing ab initio many-body calculations using the LQCD input at this value of
the quark masses [59–62] can be extended to systems containing hyperons. Appendix B is devoted
to summarizing the constraints obtained for the LO scattering amplitudes in flavor space.

Natural caseUnnatural case @ µ = m⇡

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6
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FIG. 16: A comparison of the coefficients of the LO SU(3)-symmetric interactions. The left panel corre-
sponds to the unnatural case with µ = m⇡, while the right panel represents the natural case with µ = 0,
corresponding to a tree-level expansion of the scattering amplitudes. The coefficients are expressed in units
of [ 2⇡

MB
], with MB being the baryon mass in this calculation, expressed in lattice units.

m⇡ ⇠ 806 MeV
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Importantly, LO in ERE has a special property beyond the scale transformation discussed

above. Under the momentum inversion,

p 7!
1

a2p
, (2.4)

the coordinates transform as (x, y) ! (�x, y) and the phase shift transforms as �(p) !

��(p) mod ⇡/2. This symmetry will be referred to as a conformal transformation as it

leaves the phase shift invariant modulo fixed phases. However, note that this is a symmetry

transformation that interchanges the UV and the IR. This symmetry is generally broken by

higher orders in the ERE. The conformal invariance is not particularly illuminating in single-

channel scattering as unitarity constrains the S-matrix trajectory to move in one dimension.

However, as will be seen below, in systems with spin, unitarity allows a two-dimensional

surface, and in that case the conformal invariance is powerful constraint.

Nucleon-nucleon scattering: coordinates and fixed points

The fixed points of the nucleon-nucleon S-matrix occur when the phase shifts both vanish,

�1 = �0 = 0, or are both at unitarity, �1 = �0 = ⇡
2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 = 0.

The S-matrices at these fixed points are the general solution of the equation Ŝ2 = 1̂ and are

given by

Ŝ 1 = +1̂ , Ŝ 3 = +(1̂ + �̂ · �̂)/2 ,

Ŝ 2 = �1̂ , Ŝ 4 = �(1̂ + �̂ · �̂)/2 . (2.5)

These fixed points furnish a representation of the Klein four-group, Z2 ⌦ Z2. As this is the

discrete symmetry group of the rhombus, the fixed points, which by construction provide the

boundaries of unitary interactions, suggest a geometrical interpretation of the S-matrix as a

trajectory within a rhombus whose vertices are the fixed points of the RG and mark the most

extreme values that the S-matrix can achieve consistent with unitarity.

It is straightforward to make this geometrical construction precise. In a Z2 basis consist-

ing of 1̂ and (1̂ + �̂ · �̂)/2, the S-matrix can be decomposed as

Ŝ =
1

2

⇣
e
i2�1 + e

i2�0
⌘
1̂ +

1

2

⇣
e
i2�1 � e

i2�0
⌘ �

1̂ + �̂ · �̂
�
/2 . (2.6)

It is convenient to adopt the coordinates

Ŝ = u(p) 1̂ + v(p)
�
1̂ + �̂ · �̂

�
/2 . (2.7)

where u(p) and v(p) are complex functions decomposed in terms of real functions as

u(p) = x(p) + i y(p) , v(p) = z(p) + i w(p) . (2.8)

Unitarity provides two constraints on the four parameters:

ūu + v̄v = 1 = x
2 + y

2 + z
2 + w

2
, (2.9)

– 7 –

⌘ u 1̂ + v P12

<latexit sha1_base64="eHWVwhahGC/9aScuUYT4sGAD7Z0=">AAAAAHicbZDLSgMxFIYz9VbrbdSlm2ARBKHOlIKCm6IblxXsBZqhZNJMG5q5mEuhDPMYbnwVNy4Ucdudb2PazkJbfwj8fOccTs7vJ5xJ5TjfVmFtfWNzq7hd2tnd2z+wD49aMtaC0CaJeSw6PpaUs4g2FVOcdhJBcehz2vZHd7N6e0yFZHH0qCYJ9UI8iFjACFYG9exLRJ80G0MENbqBaIhVivwAupkhFwiODUwRwRw2sl7qVrOeXXYqzlxw1bi5KYNcjZ49Rf2Y6JBGinAsZdd1EuWlWChGOM1KSEuaYDLCA9o1NsIhlV46PyyDZ4b0YRAL8yIF5/T3RIpDKSehbzpDrIZyuTaD/9W6WgXXXsqiRCsakcWiQHOoYjhLCfaZoETxiTGYCGb+CskQC0yUybJkQnCXT141rWrFrVWch1q5fpvHUQQn4BScAxdcgTq4Bw3QBAQ8g1fwDj6sF+vN+rS+Fq0FK585Bn9kTX8AKSed9g==</latexit>

E6UaM

product states

spin entanglement ⇠ |u v| ⇠ | sin(2(�1 � �0))|

<latexit sha1_base64="E+VONWFKYx7Su2iMdw46aoO95U4="></latexit>

P12 |p "i ⌦ |n #i = |p #i ⌦ |n "i

<latexit sha1_base64="bsrRZLx7FCwMpKlJsvTftBFopBI="></latexit>



L1.".-0/-7%.I.-0"=*#.+"@WaB"*5"01."EQI/0+$T"7$3.'"/"'0/0.Q
$-&.=.-&.-0"I./')+."*5""'=$-".-0/-7%.I.-0

nature of the space via the two independent degrees of freedom given by the phase shifts.

2.2 Entanglement power defined

A direct consequence of the geometric picture of the S-matrix as a trajectory confined to

a rhombus is that when �0(p) = �1(p), the S-matrix trajectory is a geodesic between fixed

points of the RG and resides on a symmetry axis of the rhombus that is protected by a Z2

subgroup of the Klein four-group. Of course in the EFT description this enhanced symmetry

is Wigner’s SU(4) spin-flavor symmetry where the two spin states of the neutron and of the

proton transform as the 4-dimensional fundamental representation [14–16]. This symmetry

also arises from the large-Nc expansion in QCD [17–19]. As this enhanced symmetry suggests

a suppression of spin-entangling interactions, this has motivated the development of measures

of entanglement that are suitable for classifying interactions.

In a recent paper [9], it was shown that the entanglement power, a state-independent

measure of quantum entanglement, can be defined for the S-matrix:

E(Ŝ) = 1 �

Z
d⌦1

4⇡

d⌦2

4⇡
Tr1

⇥
⇢̂
2

1

⇤
P (⌦1, ⌦2) , (2.17)

where ⇢̂1 = Tr2 [ ⇢̂12 ] is the reduced density matrix of the two-particle density matrix ⇢̂12 =

| outih out| with | outi = Ŝ| ini, and P is a probability distribution. For nucleon-nucleon

scattering, the entanglement power of Ŝ is

E(Ŝ) = NP sin2 (2(�1 � �0)) = 4NP |u|
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where NP is a numerical prefactor5. Expressed in terms of the coordinates (u, v) and/or

(x, y, z, w) it is clear that the entanglement power has geometrical significance as a measure

of length. The entanglement power vanishes when �1(p) � �0(p) = m
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2

for any integer m.

This includes the Z2 symmetric line �1(p) = �0(p) as well as the one point at which the phase

shifts di↵er by ⇡/2 (the blue diamond in Fig. (2)). The entanglement power is plotted for the
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at the four fixed points of the renormalization group. In general, the entanglement power

vanishes when
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Adapting momentum flow to the nucleon-nucleon system, consider the S-matrix under
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�̂(Ŝ) ⌘ p
d

dp
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Ŝ(e✏

p) � Ŝ(p)
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⌘

, (2.20)

5With P = 1, NP = 1/6. Choosing a distribution with more structure changes this prefactor.

– 10 –

D. B. Kaplan          BAPTS         3/15/19

Entanglement power in s-wave nucleon-nucleon scattering:

2

FIG. 1. The entanglement power, E(Ŝ), of the S-matrix as a
function of p, the center-of-mass nucleon momentum. The 1S0

and 3S1 phase shifts used to calculate E(Ŝ) were taken from
four di↵erent models [53–57] to provide a näıve estimate of
systematic uncertainties. Data for this figure may be found
in Table II in the supplemental material.

| outih out| with | outi = Ŝ| ini. By describing the av-
erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as

Ŝ =
1

4

�
3ei2�1 + ei2�0

�
1̂ +

1

4

�
ei2�1 � ei2�0

�
�̂ · �̂, (2)

where 1̂ = Î2 ⌦ Î2 and �̂ · �̂ =
3P

↵=1

�̂↵ ⌦ �̂↵. It follows

that the entanglement power of Ŝ is

E(Ŝ) = 1

6
sin2 (2(�1 � �0)) , (3)

which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡

2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 =

0. The S-matrices at these fixed points with vanishing
entanglement power are Ŝ = ±1̂ and ±(1̂+ �̂ · �̂)/2 2.

The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is

Lnf=2

LO
= �1

2
CS(N

†N)2� 1

2
CT

�
N†�N

�
·
�
N†�N

�
, (4)

where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-
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erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as
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p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is

Lnf=2

LO
= �1

2
CS(N

†N)2� 1

2
CT

�
N†�N

�
·
�
N†�N

�
, (4)

where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-

nature of the space via the two independent degrees of freedom given by the phase shifts.

2.2 Entanglement power defined

A direct consequence of the geometric picture of the S-matrix as a trajectory confined to

a rhombus is that when �0(p) = �1(p), the S-matrix trajectory is a geodesic between fixed

points of the RG and resides on a symmetry axis of the rhombus that is protected by a Z2

subgroup of the Klein four-group. Of course in the EFT description this enhanced symmetry

is Wigner’s SU(4) spin-flavor symmetry where the two spin states of the neutron and of the

proton transform as the 4-dimensional fundamental representation [14–16]. This symmetry

also arises from the large-Nc expansion in QCD [17–19]. As this enhanced symmetry suggests

a suppression of spin-entangling interactions, this has motivated the development of measures

of entanglement that are suitable for classifying interactions.

In a recent paper [9], it was shown that the entanglement power, a state-independent

measure of quantum entanglement, can be defined for the S-matrix:

E(Ŝ) = 1 �

Z
d⌦1

4⇡

d⌦2

4⇡
Tr1

⇥
⇢̂
2

1

⇤
P (⌦1, ⌦2) , (2.17)

where ⇢̂1 = Tr2 [ ⇢̂12 ] is the reduced density matrix of the two-particle density matrix ⇢̂12 =

| outih out| with | outi = Ŝ| ini, and P is a probability distribution. For nucleon-nucleon

scattering, the entanglement power of Ŝ is

E(Ŝ) = NP sin2 (2(�1 � �0)) = 4NP |u|
2
|v|

2 = 4NP
�
x

2 + y
2
� �

z
2 + w

2
�

, (2.18)

where NP is a numerical prefactor5. Expressed in terms of the coordinates (u, v) and/or

(x, y, z, w) it is clear that the entanglement power has geometrical significance as a measure

of length. The entanglement power vanishes when �1(p) � �0(p) = m
⇡
2

for any integer m.

This includes the Z2 symmetric line �1(p) = �0(p) as well as the one point at which the phase

shifts di↵er by ⇡/2 (the blue diamond in Fig. (2)). The entanglement power is plotted for the

Nijmegen phase shift analysis [13] in Fig. (3). In addition, the entanglement power vanishes

at the four fixed points of the renormalization group. In general, the entanglement power

vanishes when

Ŝ = e
i2�0Ŝ 1 , Ŝ = �e

i2�0Ŝ 3 . (2.19)

Therefore, in the absence of entanglement power, the S-matrix is characterized by two curves

that connect the fixed points via the flow of the single phase shift �0(p) from 0 to ⇡/2.

Adapting momentum flow to the nucleon-nucleon system, consider the S-matrix under

the action of a momentum dilatation p 7! e
✏
p. For small ✏,

�̂(Ŝ) ⌘ p
d

dp
Ŝ(p) =

1

✏

⇣
Ŝ(e✏

p) � Ŝ(p)
⌘

, (2.20)

5With P = 1, NP = 1/6. Choosing a distribution with more structure changes this prefactor.

– 10 –

~ SWAP



9*"I./')+.'"*5".-0/-7%.I.-0"=+*3$&."
$-0.+.'0$-7"N-.#O"$-5*+I/0$*-"/8*)0"

'(/00.+$-7"=+*(.''.'P

R U0"01+.'1*%&>"I$-$I$]/0$*-"*5"01."Wa"+.(*3.+'"6$7-.+"
'4II.0+4"/-&>"$-"01."01+..Q5%/3*+"(/'.>"01."'=.(0+/%"
=/00.+-"*8'.+3.&"$-"%/00$(."[A9"'$I)%/0$*-'>"/-&"/"-.#"

""""E2@bcB"'=$-Q5%/3*+"'4II.0+4;

3

FIG. 2. Density plot of the entanglement power E(Ŝ) of
the S-matrix (see Eq. (20) of the supplemental material) inte-
grated over center of mass momenta 0  p  m⇡/2, versus the
Lagrangian couplings C0/C? and C1/C? where C? is the crit-
ical coupling for unitary scattering. The entanglement power
vanishes at the four conformal fixed-points (white points), as
well as the fixed line corresponding to Wigner SU(4) symme-
try (white diagonal).

gence of SU(4) symmetry (but not necessarily conformal
symmetry) follows from the large-Nc expansion where
CT /CS = O(1/N2

c ) [6].
The symmetry points of the EFT can be related to

minimization of the entanglement power of the S-matrix.
Fig. 2 shows a density plot of E(Ŝ) as computed from
Eq. (4) averaged over momenta 0  p  m⇡/2, as a
function of the couplings C0,1 renormalized at µ = m⇡/2
and rescaled by C?. Superimposed in white are the four
conformal fixed points, as well as as the Wigner SU(4)
fixed line. The minima of the entanglement power of the
S-matrix (E(Ŝ) = 0) coincide with the points of enhanced
symmetry in the EFT; the SU(4) line corresponds to
�0 = �1 for all momenta, while the conformal points o↵
the SU(4) line correspond to |�0 � �1| = ⇡/2.

In the nf = 2 case, the large-Nc expansion gives a
similar expectation for SU(4) symmetry as does a princi-
ple of entanglement suppression. However, an analogous
equivalence does not hold for nf = 3, as the large-Nc

expansion predicts the conventional approximate SU(6)
spin-flavor symmetry, while entanglement suppression
predicts a much larger SU(16) symmetry under which
the two spin states of the baryon octet transform as a
16-dimensional representation. To see this, consider the
EFT in the SU(3) flavor symmetry limit of QCD, where
six independent contact operators contribute at LO [11],

Lnf=3

LO
= �c1hB†

iBiB
†
jBji � c2hB†

iBjB
†
jBii

�c3hB†
iB

†
jBiBji � c4hB†

iB
†
jBjBii

�c5hB†
iBiihB†

jBji � c6hB†
iBjihB†

jBii , (5)

where h...i denotes a trace in flavor space, and Bi is the

3 ⇥ 3 octet-baryon matrix where the subscript i = 1, 2
denotes spin. Lnf=3

LO
is invariant under rotations and the

transformation B ! V BV † where V is an SU(3) matrix.
In the large-Nc limit of QCD, an SU(6) spin-flavor sym-
metry emerges relating the six coe�cients ci in Eq. (5)
to two independent coe�cients a, b [6] in the SU(6) in-
variant Lagrange density,

c1 = � 7

27
b , c2 =

1

9
b , c3 =

10

81
b ,

c4 = �14

81
b , c5 = a +

2

9
b , c6 = �1

9
b . (6)

A comprehensive set of lattice QCD calculations of light
nuclei, hypernuclei and low-energy baryon-baryon scat-
tering in the limit of SU(3) flavor symmetry by the
NPLQCD collaboration [19, 61, 62] demonstrates that
the ci are consistent with this predicted SU(6) spin-flavor
symmetry [19]. The two-baryon sector calculated with
m⇡ ⇠ 800 MeV is found to be unnatural [19, 61, 62],
with a scattering length that is larger than the range of
the interaction, and hence better described by the power-
counting of van Kolck [63] and KSW [58, 59, 64]. Further,
the values of c1, c2, c3, c4 and c6 are calculated to be much
smaller than c5, indicating that b ⌧ a [19, 61, 62]. When
b = 0, the SU(6) is enlarged to an emergent SU(16) spin-
flavor symmetry [19], where the baryon states populate
the fundamental of SU(16),

Lnf=3

LO
!�1

2
cS

�
B†B

�2 B = (p",p#,n",n#,⇤",...)
T , (7)

with cS = 2c5.
The existence of SU(16) symmetry and b = 0 does

not follow from the large-Nc expansion, but does follow
from entanglement suppression. The entanglement power
of the S-matrix in spin-space from the nf = 3 interac-
tions in Eq. (5) can be addressed by considering its ac-
tion on states of distinguishable baryons. Computing the
entanglement power E(Ŝ) for more than six distinct two-
baryon channels with nonidentical particles—e.g., ⇤N ,
⌅�p—shows that zero entanglement power occurs at the
SU(16) point where all the cn couplings vanish except
for c5, which is unconstrained (and all LO scattering ma-
trices in the J = 0 and J = 1 mixed-flavor sectors are
diagonal [11, 19]). Thus, the principle of entanglement
suppression gives rise to an approximate symmetry, ap-
parent in lattice QCD calculations [19, 61, 62], that does
not follow from the large-Nc limit. We conclude that
the large-Nc limit of QCD does not provide a su�ciently
stringent constraint to produce a low-energy EFT that
does not entangle, which could not be deduced from the
nf = 2 sector alone [6]. Thus, the entanglement power
of the S-matrix appears to be a dominant ingredient in
dictating the properties and relative size of interactions
in low-energy nuclear and hypernuclear systems.
While in nuclei and hypernuclei contributions to bind-

ing from three-body forces between nucleons and hy-
perons are small compared with those from two-baryon
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rections non-perturbatively through the use of energy-dependent potentials,
which from the EFT perspective, can be constructed using operator ambigui-
ties and the freedom of field redefinition. One of the goals of this contribution
is to provide a an EFT scheme which treats e↵ective-range corrections exactly
using energy-independent interactions. It may come as a surprise that there is
a powerful symmetry which constrains this system.

In the Wilsonian paradigm, EFTs are viewed as perturbations about fixed
points of the renormalization group (RG) [27]. In non-relativistic s-wave scat-
tering with finite-range forces, the running couplings exhibit two interesting
fixed points, the trivial fixed point where there is no interaction, and the
unitary fixed point where the interaction is as strong as it can be without
violating unitarity. At both fixed points, the EFT exhibits conformal invari-
ance or Schrödinger symmetry [28]. Note however that the notion that EFTs
of contact forces are expansions about fixed points of the RG is not strictly-
speaking correct, as, at the fixed point itself, there is no scattering. That is,
the LO amplitude, with finite scattering lengths, has an intrinsic scale and is
therefore in itself necessarily a perturbation about the RG fixed point.

The main point that will be conveyed in this contribution is that the sim-
plest S-matrices which describe s-wave scattering with finite-range forces near
(but not at) unitarity exhibit exact UV/IR symmetries. The new viewpoint
here that may be unfamiliar to the reader is the focus on the symmetries of
the S-matrix, rather than the symmetries of the action and of the scatter-
ing amplitude. In addition to providing a new way of viewing the EFT near
the unitarity fixed point, UV/IR symmetries suggest novel EFT expansions.
In particular, the s-wave scattering system at low energies, with scattering
length and e↵ective range corrections treated exactly, is considered in detail
as an example of the power of the UV/IR symmetries.

2 The S-matrix and UV/IR symmetry

2.1 Symmetries of S-matrix elements

Below inelastic thresholds, the unitary s-wave scattering amplitude for a finite
range potential is given by the e↵ective range expansion (ERE)

T (k) = �4⇡

M


�1

a
+

1

2
rk

2 + v2k
4 + v3k

6 + O(k8) � ik

��1

, (1)

where k =
p

ME is the on-shell center-of-mass (c.o.m.) momentum, a is the
scattering length, r is the e↵ective range, and the vsi are shape parameters.

With the normalization of the scattering amplitude implied by Eq. (1), the
S-matrix element is given by

S = e
i2�(k) = 1 � i

kM

2⇡
T (k) . (2)

A*-'$&.+"'$-7%.Q(1/--.%"'Q#/3."'(/00.+$-7
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Now consider the scattering length approximation, where all e↵ective range
and shape parameters are taken to vanish. In this case, the scattering ampli-
tude and S-matrix element are

T (k) =
4⇡

M

a

1 + iak
, S(k) =

1 � iak

1 + iak
. (3)

It is immediately clear that S has a symmetry which is not a symmetry of T .
The scale transformation k 7! e

�
k, a 7! e

��
a leaves S invariant and simply

implies that varying k with a fixed is the same as varying a with k fixed. Now
the trivial fixed point, S = 1, is reached with no interaction, a = 0 or with
k = 0, and the unitary fixed point, S = �1, is reached with a infinite or with
k infinite. Consider the momentum inversion

k 7! 1

a2k
. (4)

This transformation on T is complicated. However it implies a simple trans-
formation of the S-matrix element,

�(k) 7! ��(k) ± ⇡

2
, S ! �S

⇤
, (5)

where the sign of the ⇡/2 phase is determined by the sign of the scattering
length. This momentum inversion clearly interchanges the trivial and unitary
RG fixed points. As the trivial RG fixed point is, by definition, not seen by the
scattering amplitude, it is no surprise that the momentum inversion symmetry
does not act simply on T . The symmetry interrelates the scattering amplitude
and the unit operator, and thus is realized on the S-matrix.

It may seem that the momentum inversion transformation of Eq. (4) is
orthogonal to the idea of EFT since it is interchanges the UV and the IR.
Note however that at LO in the EFT, one is considering scattering in a limit
in which all short-distance mass scales are taken to be very large, and in this
limit, long-distance forces (like pion exchange) and inelastic thresholds (like the
pion-production threshold) are only probed as momentum approaches infinity
and it therefore makes sense to consider transformations of the momenta over
the entire momentum half-line, 0 < k < 1.

The fixed point of the momentum-inversion transformation3 is the momen-
tum that maps into itself under inversion, k

� = |a|�1, which is the absolute
value of the scattering amplitude’s pole position in the complex momentum
plane. Therefore viewing the scattering amplitude in the scattering length ap-
proximation as LO in an EFT, then the EFT is, strictly speaking, an expansion
about the fixed point, k

�, of this transformation.
Next consider the inclusion of e↵ective range e↵ects with shape parameters

taken to vanish. In this case, consider the momentum inversion

k 7! 2

|ar|k . (6)

3 This fixed point is not to be confused with the fixed points of the RG at which the EFT
exhibits Schrödinger symmetry and there is no scattering.
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where the sign of the ⇡/2 phase is determined by the sign of the scattering
length. This momentum inversion clearly interchanges the trivial and unitary
RG fixed points. As the trivial RG fixed point is, by definition, not seen by the
scattering amplitude, it is no surprise that the momentum inversion symmetry
does not act simply on T . The symmetry interrelates the scattering amplitude
and the unit operator, and thus is realized on the S-matrix.

It may seem that the momentum inversion transformation of Eq. (4) is
orthogonal to the idea of EFT since it is interchanges the UV and the IR.
Note however that at LO in the EFT, one is considering scattering in a limit
in which all short-distance mass scales are taken to be very large, and in this
limit, long-distance forces (like pion exchange) and inelastic thresholds (like the
pion-production threshold) are only probed as momentum approaches infinity
and it therefore makes sense to consider transformations of the momenta over
the entire momentum half-line, 0 < k < 1.

The fixed point of the momentum-inversion transformation3 is the momen-
tum that maps into itself under inversion, k

� = |a|�1, which is the absolute
value of the scattering amplitude’s pole position in the complex momentum
plane. Therefore viewing the scattering amplitude in the scattering length ap-
proximation as LO in an EFT, then the EFT is, strictly speaking, an expansion
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implies that varying k with a fixed is the same as varying a with k fixed. Now
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k = 0, and the unitary fixed point, S = �1, is reached with a infinite or with
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This transformation on T is complicated. However it implies a simple trans-
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where the sign of the ⇡/2 phase is determined by the sign of the scattering
length. This momentum inversion clearly interchanges the trivial and unitary
RG fixed points. As the trivial RG fixed point is, by definition, not seen by the
scattering amplitude, it is no surprise that the momentum inversion symmetry
does not act simply on T . The symmetry interrelates the scattering amplitude
and the unit operator, and thus is realized on the S-matrix.

It may seem that the momentum inversion transformation of Eq. (4) is
orthogonal to the idea of EFT since it is interchanges the UV and the IR.
Note however that at LO in the EFT, one is considering scattering in a limit
in which all short-distance mass scales are taken to be very large, and in this
limit, long-distance forces (like pion exchange) and inelastic thresholds (like the
pion-production threshold) are only probed as momentum approaches infinity
and it therefore makes sense to consider transformations of the momenta over
the entire momentum half-line, 0 < k < 1.

The fixed point of the momentum-inversion transformation3 is the momen-
tum that maps into itself under inversion, k

� = |a|�1, which is the absolute
value of the scattering amplitude’s pole position in the complex momentum
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length. This momentum inversion clearly interchanges the trivial and unitary
RG fixed points. As the trivial RG fixed point is, by definition, not seen by the
scattering amplitude, it is no surprise that the momentum inversion symmetry
does not act simply on T . The symmetry interrelates the scattering amplitude
and the unit operator, and thus is realized on the S-matrix.

It may seem that the momentum inversion transformation of Eq. (4) is
orthogonal to the idea of EFT since it is interchanges the UV and the IR.
Note however that at LO in the EFT, one is considering scattering in a limit
in which all short-distance mass scales are taken to be very large, and in this
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and it therefore makes sense to consider transformations of the momenta over
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The fixed point of the momentum-inversion transformation3 is the momen-
tum that maps into itself under inversion, k

� = |a|�1, which is the absolute
value of the scattering amplitude’s pole position in the complex momentum
plane. Therefore viewing the scattering amplitude in the scattering length ap-
proximation as LO in an EFT, then the EFT is, strictly speaking, an expansion
about the fixed point, k

�, of this transformation.
Next consider the inclusion of e↵ective range e↵ects with shape parameters

taken to vanish. In this case, consider the momentum inversion

k 7! 2

|ar|k . (6)

3 This fixed point is not to be confused with the fixed points of the RG at which the EFT
exhibits Schrödinger symmetry and there is no scattering.
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Symmetries of the nucleon-nucleon S-matrix and e↵ective field theory expansions 9

in perturbation theory. Keeping the first term in the s-wave potential, the
solution of the LS equation is

TLO(k) =

✓
1

C0
� I(k)

◆�1

, (22)

where

I(k) ⌘
⇣

!

2

⌘3�D

M

Z
d
D

q

(2⇡)D
1

k2 � q2 + i✏

PDS��! � M

4⇡
(! + ik) , (23)

which has been evaluated in dimensional regularization with the PDS scheme [12,
13]. The matching equations in this case are

a =

✓
4⇡

MC0
+ !

◆�1

,

r = vn = 0 . (24)

Inverting one finds

C0(!) =
4⇡

M

1

1/a � !
. (25)

With unitary fixed point, C0 = C0?, corresponding to a divergent scattering
length (unitarity). A rescaled coupling can be defined as Ĉ0 ⌘ C0/C0?. The
corresponding beta-function is then

�̂(Ĉ0) = !
d

d!
Ĉ0(!) = �Ĉ0(!)

⇣
Ĉ0(!) � 1

⌘
. (26)

which explicitly has fixed points at Ĉ0 = 0 and 1. Now note that the beta-
function is invariant with respect to the inversion of the RG scale,

! 7! 1

a2
s
!

, (27)

which interchanges the trivial and unitary fixed points:

Ĉ0(!) $ 1 � Ĉ0(!) . (28)

Possibly more explanation here tying back to the S-matrix?

4.4 Range corrections with zero-range forces

With a, r ⇠ @�1 and shape parameters of natural size, vn ⇠ M�2n+1, the
amplitude can be expanded for k ⌧ M as

T (k) = �4⇡

M

✓
�1

a
+

1

2
rk

2 � ik

◆�1 
1 + O(k4)

�
. (29)
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⇣
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Ĉ0(!) $ 1 � Ĉ0(!) . (28)

Possibly more explanation here tying back to the S-matrix?

4.4 Range corrections with zero-range forces

With a, r ⇠ @�1 and shape parameters of natural size, vn ⇠ M�2n+1, the
amplitude can be expanded for k ⌧ M as

T (k) = �4⇡

M

✓
�1

a
+

1

2
rk

2 � ik

◆�1 
1 + O(k4)

�
. (29)

0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

! !

S
y
m
m
et
ri
es

o
f
th

e
n
u
cl
eo

n
-n
u
cl
eo

n
S
-m

a
tr
ix

a
n
d
e↵

ec
ti
v
e
fi
el
d
th

eo
ry

ex
p
a
n
si
o
n
s

9

in
p
er

tu
rb

at
io

n
th

eo
ry

.
K

ee
p
in

g
th

e
fi
rs

t
te

rm
in

th
e

s-
w

av
e

p
ot

en
ti

al
,

th
e

so
lu

ti
on

of
th

e
L
S

eq
u
at

io
n

is

T
L
O

(k
)

=

✓
1 C
0
�

I(
k
)◆

�
1

,
(2

2)

w
h
er

e I(
k
)
⌘

⇣
! 2

⌘ 3
�
D

M

Z
d
D

q

(2
⇡
)D

1

k
2
�

q
2

+
i✏

P
D

S
��

!
�

M 4⇡
(!

+
ik

)
,

(2
3)

w
h
ic

h
h
as

b
ee

n
ev

al
u
at

ed
in

d
im

en
si

on
al

re
gu

la
ri

za
ti

on
w

it
h

th
e

P
D

S
sc

h
em

e
[1

2,
13

].
T

h
e

m
at

ch
in

g
eq

u
at

io
n
s

in
th

is
ca

se
ar

e

a
=

✓
4⇡

M
C

0
+

!

◆
�

1

,

r
=

v
n

=
0

.
(2

4)

In
ve

rt
in

g
on

e
fi
n
d
s

C
0
(!

)
=

4⇡ M

1

1/
a
�

!
.

(2
5)

W
it

h
u
n
it

ar
y

fi
xe

d
p
oi

nt
,
C

0
=

C
0
?
,
co

rr
es

p
on

d
in

g
to

a
d
iv

er
ge

nt
sc

at
te

ri
n
g

le
n
gt

h
(u

n
it

ar
it
y)

.
A

re
sc

al
ed

co
u
p
li
n
g

ca
n

b
e

d
efi

n
ed

as
Ĉ
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Ĉ
0
(!

)
.

(2
8)

P
os

si
b
ly

m
or

e
ex

p
la

n
at

io
n

h
er

e
ty

in
g

b
ac

k
to

th
e

S
-m

at
ri

x?

4.
4

R
an

ge
co

rr
ec

ti
on

s
w

it
h

ze
ro

-r
an

ge
fo

rc
es

W
it

h
a
,
r
⇠

@�
1

an
d

sh
ap

e
p
ar

am
et

er
s

of
n
at

u
ra

l
si

ze
,

v
n
⇠

M
�

2
n
+

1
,

th
e

am
p
li
tu

d
e

ca
n

b
e

ex
p
an

d
ed

fo
r

k
⌧

M
as

T
(k

)
=

�
4⇡ M

✓
�

1 a
+

1 2
r
k

2
�

ik

◆
�

1
 1

+
O

(k
4
)�

.
(2

9)

Symmetries of the nucleon-nucleon S-matrix and e↵ective field theory expansions 9

in perturbation theory. Keeping the first term in the s-wave potential, the
solution of the LS equation is

TLO(k) =

✓
1

C0
� I(k)

◆�1

, (22)

where

I(k) ⌘
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which has been evaluated in dimensional regularization with the PDS scheme [12,
13]. The matching equations in this case are

a =
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,

r = vn = 0 . (24)

Inverting one finds

C0(!) =
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M

1

1/a � !
. (25)

With unitary fixed point, C0 = C0?, corresponding to a divergent scattering
length (unitarity). A rescaled coupling can be defined as Ĉ0 ⌘ C0/C0?. The
corresponding beta-function is then

�̂(Ĉ0) = !
d
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Ĉ0(!) = �Ĉ0(!)
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⌘
. (26)

which explicitly has fixed points at Ĉ0 = 0 and 1. Now note that the beta-
function is invariant with respect to the inversion of the RG scale,

! 7! 1

a2
s
!

, (27)

which interchanges the trivial and unitary fixed points:

Ĉ0(!) $ 1 � Ĉ0(!) . (28)

Possibly more explanation here tying back to the S-matrix?

4.4 Range corrections with zero-range forces

With a, r ⇠ @�1 and shape parameters of natural size, vn ⇠ M�2n+1, the
amplitude can be expanded for k ⌧ M as
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Importantly, LO in ERE has a special property beyond the scale transformation discussed

above. Under the momentum inversion,

p 7!
1

a2p
, (2.4)

the coordinates transform as (x, y) ! (�x, y) and the phase shift transforms as �(p) !

��(p) mod ⇡/2. This symmetry will be referred to as a conformal transformation as it

leaves the phase shift invariant modulo fixed phases. However, note that this is a symmetry

transformation that interchanges the UV and the IR. This symmetry is generally broken by

higher orders in the ERE. The conformal invariance is not particularly illuminating in single-

channel scattering as unitarity constrains the S-matrix trajectory to move in one dimension.

However, as will be seen below, in systems with spin, unitarity allows a two-dimensional

surface, and in that case the conformal invariance is powerful constraint.

Nucleon-nucleon scattering: coordinates and fixed points

The fixed points of the nucleon-nucleon S-matrix occur when the phase shifts both vanish,

�1 = �0 = 0, or are both at unitarity, �1 = �0 = ⇡
2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 = 0.

The S-matrices at these fixed points are the general solution of the equation Ŝ2 = 1̂ and are

given by

Ŝ 1 = +1̂ , Ŝ 3 = +(1̂ + �̂ · �̂)/2 ,

Ŝ 2 = �1̂ , Ŝ 4 = �(1̂ + �̂ · �̂)/2 . (2.5)

These fixed points furnish a representation of the Klein four-group, Z2 ⌦ Z2. As this is the

discrete symmetry group of the rhombus, the fixed points, which by construction provide the

boundaries of unitary interactions, suggest a geometrical interpretation of the S-matrix as a

trajectory within a rhombus whose vertices are the fixed points of the RG and mark the most

extreme values that the S-matrix can achieve consistent with unitarity.

It is straightforward to make this geometrical construction precise. In a Z2 basis consist-

ing of 1̂ and (1̂ + �̂ · �̂)/2, the S-matrix can be decomposed as

Ŝ =
1

2

⇣
e
i2�1 + e

i2�0
⌘
1̂ +

1

2

⇣
e
i2�1 � e

i2�0
⌘ �

1̂ + �̂ · �̂
�
/2 . (2.6)

It is convenient to adopt the coordinates

Ŝ = u(p) 1̂ + v(p)
�
1̂ + �̂ · �̂

�
/2 . (2.7)

where u(p) and v(p) are complex functions decomposed in terms of real functions as

u(p) = x(p) + i y(p) , v(p) = z(p) + i w(p) . (2.8)

Unitarity provides two constraints on the four parameters:

ūu + v̄v = 1 = x
2 + y

2 + z
2 + w

2
, (2.9)
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ūu + v̄v = 1 = x
2 + y

2 + z
2 + w

2
, (2.9)

– 7 –

h

<latexit sha1_base64="0LoNUPId1hhmBuXcotBZd/4zZho=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmqN+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14l7YuqV6teN2uV+k0eRxFO4BTOwYNLqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/ANHZjPg=</latexit>

v

<latexit sha1_base64="DAH+cxrktNpncmbTwQRhCmrrLtw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvXhMwDwgWcLspDcZMzu7zMwGQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mkmCfkQHkoecUWOl+rhXLLlldwGyTryMlCBDrVf86vZjlkYoDRNU647nJsafUmU4EzgrdFONCWUjOsCOpZJGqP3p4tAZubBKn4SxsiUNWai/J6Y00noSBbYzomaoV725+J/XSU1440+5TFKDki0XhakgJibzr0mfK2RGTCyhTHF7K2FDqigzNpuCDcFbfXmdNK/KXqV8W6+UqndZHHk4g3O4BA+uoQoPUIMGMEB4hld4c56cF+fd+Vi25pxs5hT+wPn8AecRjQY=</latexit>

r

<latexit sha1_base64="ygyqlkFM1MlD09sJ/2Q9IlUZaeQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmqpfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6Lq1arXzVqlfpPHUYQTOIVz8OAS6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f4QGNAg==</latexit>

L1.4"+./%$]."01."<%.$-"5*)+Q7+*)=M

L1$'"$'"01."'4II.0+4"7+*)="*5"01."+1*I8)'

U0"%./&$-7"*+&.+"@KVB"$-"01."WFW

Figure 3. The entanglement power obtained from Eq. (2.18) using the Nijmegen phase shift analysis
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from the measure of curvature given by Eq. (??) (black curve).

and �̂(Ŝ) = 0 at the fixed points where Ŝ2 = 1̂. In the Z2 basis one then has

�̂(Ŝ) = �u(p) 1̂ + �v(p)
�
1̂ + �̂ · �̂

�
/2 , (2.21)

with

�u(p) ⌘ p
d

dp
u(p) , �v(p) ⌘ p

d

dp
v(p) . (2.22)

Eq. (2.18) makes clear that the entanglement power is related to the distance of the u and v

coordinates from the origin. However, given that the entanglement power has support only

away from the fixed points, one might expect that when the momentum dependence of the

S-matrix is specified, the entanglement power will be directly related to �u,v(p). Indeed,

generalizing the expression for uv given in Eq. (2.42) to a linear combination of �u and �v

with complex coe�cients, it is straightforward to find an expression for the entanglement

power in terms of the beta functions alone

E(Ŝ) =
NP
4

����
�v̄(p)�u(p) � �ū(p)�v(p)

�2
ū(p) � �2

v̄(p)

����
2

. (2.23)

2.3 E↵ective range theory at leading order

At LO in the ERE, the S-matrix is completely determined by the scattering lengths and in

terms of the coordinate basis is

u(p) =
1

2

✓
1 � ia1p

1 + ia1p
+

1 � ia0p

1 + ia0p

◆
, v(p) =

1

2

✓
1 � ia1p

1 + ia1p
�

1 � ia0p

1 + ia0p

◆
. (2.24)

In terms of phase shifts,

� = �2 tan�1(a0p) , ✓ = �2 tan�1(a1p) . (2.25)
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which defines the unit three-sphere S
3, and the projective constraint

ūv + v̄u = 0 = xz + yw . (2.10)

This choice of coordinates is by no means unique. A general parametrization of the S-matrix

is

Ŝ =
⇥
x(p) + i y(p)

⇤
1̂ +

⇥
z(p) + i w(p)

⇤ �
1̂� + �̂ · �̂↵

�
. (2.11)

With the coordinate choice

x = 1

4↵ [(3↵ � �) cos(�) + (↵ + �) cos(✓)] ,

y = 1

4↵ [(3↵ � �) sin(�) + (↵ + �) sin(✓)] ,

z = 1

4↵ [� cos(�) + cos(✓)] ,

w = 1

4↵ [� sin(�) + sin(✓)] , (2.12)

Ŝ is independent of ↵ and �. Here we have defined � ⌘ 2�0 and ✓ ⌘ 2�1. The unitarity

constraints now take the form

1 = (x + (↵ + �) z)2 + (y + (↵ + �) w)2 ,

(↵ � �)
�
w

2 + z
2
�

= xz + yw . (2.13)

Requiring that the coordinate system (x, y, z, w) describe an isotropic space yields the con-

straints 3↵�� = ↵+� = 1, or ↵ = � = 1/2 which recovers the choice made above in Eq. (2.7)

and Eq. (2.8) and leads to the parameterization of the S-matrix that will be used throughout

this paper2:

x = 1

2
r[cos(�) + cos(✓)] , y = 1

2
r[sin(�) + sin(✓)] ,

z = 1

2
r[� cos(�) + cos(✓)] , w = 1

2
r[� sin(�) + sin(✓)] , (2.15)

with � 2 [0, 2⇡] and ✓ 2 [0, 2⇡] and r = 1.

The fixed points of the RG in (x, y, z, w) coordinates are:

Ŝ 1 = (+1, 0, 0, 0) , Ŝ 3 = ( 0, 0, +1, 0) ,

Ŝ 2 = (�1, 0, 0, 0) , Ŝ 4 = ( 0, 0, �1, 0) . (2.16)

A geometrical description of scattering follows by mapping the Z2 basis to the u�v plane3

with u representing the 1̂ axis and v representing the (1̂+�̂ ·�̂)/2 axis. The fixed points sit on

2Another useful isotropic parameterization of the S-matrix is given by the Hopf-like coordinates,

x = r cos ⇠ sin ⌘ , y = r sin ⇠ sin ⌘ ,

z = r sin ⇠ cos ⌘ , w = �r cos ⇠ cos ⌘ . (2.14)

with ⇠ 2 [0, 2⇡) and ⌘ 2 [0,⇡].
3In what follows, the u � v plane will refer collectively to the x � z and y � w planes for the real and

imaginary parts of the S-matrix, respectively.
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Ŝ 2 = (�1, 0, 0, 0) , Ŝ 4 = ( 0, 0, �1, 0) . (2.16)

A geometrical description of scattering follows by mapping the Z2 basis to the u�v plane3

with u representing the 1̂ axis and v representing the (1̂+�̂ ·�̂)/2 axis. The fixed points sit on

2Another useful isotropic parameterization of the S-matrix is given by the Hopf-like coordinates,

x = r cos ⇠ sin ⌘ , y = r sin ⇠ sin ⌘ ,

z = r sin ⇠ cos ⌘ , w = �r cos ⇠ cos ⌘ . (2.14)

with ⇠ 2 [0, 2⇡) and ⌘ 2 [0,⇡].
3In what follows, the u � v plane will refer collectively to the x � z and y � w planes for the real and

imaginary parts of the S-matrix, respectively.

– 8 –

which defines the unit three-sphere S
3, and the projective constraint
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leaves the phase shift invariant modulo fixed phases. However, note that this is a symmetry

transformation that interchanges the UV and the IR. This symmetry is generally broken by

higher orders in the ERE. The conformal invariance is not particularly illuminating in single-

channel scattering as unitarity constrains the S-matrix trajectory to move in one dimension.

However, as will be seen below, in systems with spin, unitarity allows a two-dimensional
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Ŝ =
⇥
x(p) + i y(p)

⇤
1̂ +

⇥
z(p) + i w(p)

⇤ �
1̂� + �̂ · �̂↵

�
. (2.11)

With the coordinate choice

x = 1

4↵ [(3↵ � �) cos(�) + (↵ + �) cos(✓)] ,

y = 1

4↵ [(3↵ � �) sin(�) + (↵ + �) sin(✓)] ,

z = 1

4↵ [� cos(�) + cos(✓)] ,

w = 1

4↵ [� sin(�) + sin(✓)] , (2.12)
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given by
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Ŝ =
1

2

⇣
e
i2�1 + e

i2�0
⌘
1̂ +

1

2

⇣
e
i2�1 � e

i2�0
⌘ �

1̂ + �̂ · �̂
�
/2 . (2.6)

It is convenient to adopt the coordinates
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��(p) mod ⇡/2. This symmetry will be referred to as a conformal transformation as it

leaves the phase shift invariant modulo fixed phases. However, note that this is a symmetry

transformation that interchanges the UV and the IR. This symmetry is generally broken by

higher orders in the ERE. The conformal invariance is not particularly illuminating in single-

channel scattering as unitarity constrains the S-matrix trajectory to move in one dimension.

However, as will be seen below, in systems with spin, unitarity allows a two-dimensional

surface, and in that case the conformal invariance is powerful constraint.

Nucleon-nucleon scattering: coordinates and fixed points

The fixed points of the nucleon-nucleon S-matrix occur when the phase shifts both vanish,

�1 = �0 = 0, or are both at unitarity, �1 = �0 = ⇡
2
, or when �1 = 0, �0 = ⇡
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, �0 = 0.
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Ŝ 2 = �1̂ , Ŝ 4 = �(1̂ + �̂ · �̂)/2 . (2.5)

These fixed points furnish a representation of the Klein four-group, Z2 ⌦ Z2. As this is the
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Figure 13. The entangling potential on the flat torus for finite values of the scattering lengths in
the conformal range model. The potential vanishes or is constant at the blue dot fixed points and is
infinite at the red dot fixed points.

varying the light-quark masses in QCD to adjust the threshold for pion production. In the

chiral limit, at scattering threshold there will be pion radiation which, for present purposes,

is not measured and is removed from the system as a loss of unitarity. In the S-matrix

formalism, the inclusion of some generic inelastic scattering process is achieved by replacing

the single-channel S-matrices by ⌘0 exp 2i�0 and ⌘1 exp 2i�1, with the inelasticity parameters

satisfying 0 < ⌘0,1 < 1. Assuming here that ⌘0 = ⌘1 = r, inelasticity can be realized in the R4

embedding coordinates of Eq. (2.15) through variation of r. The S-matrix with inelasticities

present, ŜI , then satisfies the formal relation

Ŝ†
I ŜI = Ŝ†Ŝ �

X

�

|�ih�| , (5.1)

where Ŝ is the unitary S-matrix of the total system (nucleon-nucleon and inelastic channels),

and � represents an inelastic contribution. It then follows that
�
1 � r

2
�

1̂ =
X

�

|�ih�| . (5.2)

It is clear that r depends non-trivially on momentum and involves a summation over all

kinematically-allowed final states.
X

�

|�ih�| = |NN⇡ihNN⇡| + . . . + |NN⇡ . . . ⇡ihNN⇡ . . . ⇡| + . . . . (5.3)

The momentum flow equation with inelasticities present is

p
d

dp
ŜI = r

✓
p

d

dp
Ŝ +

✓
p

d

dp
ln r

◆
Ŝ

◆
. (5.4)
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2-$0/+$04M

a/+/I.0+$("+.=+.'.-0/0$*-M

which defines the unit three-sphere S
3, and the projective constraint

ūv + v̄u = 0 = xz + yw . (2.10)

This choice of coordinates is by no means unique. A general parametrization of the S-matrix

is

Ŝ =
⇥
x(p) + i y(p)

⇤
1̂ +

⇥
z(p) + i w(p)

⇤ �
1̂� + �̂ · �̂↵

�
. (2.11)

With the coordinate choice

x = 1

4↵ [(3↵ � �) cos(�) + (↵ + �) cos(✓)] ,

y = 1

4↵ [(3↵ � �) sin(�) + (↵ + �) sin(✓)] ,

z = 1

4↵ [� cos(�) + cos(✓)] ,

w = 1

4↵ [� sin(�) + sin(✓)] , (2.12)

Ŝ is independent of ↵ and �. Here we have defined � ⌘ 2�0 and ✓ ⌘ 2�1. The unitarity

constraints now take the form

1 = (x + (↵ + �) z)2 + (y + (↵ + �) w)2 ,

(↵ � �)
�
w

2 + z
2
�

= xz + yw . (2.13)

Requiring that the coordinate system (x, y, z, w) describe an isotropic space yields the con-

straints 3↵�� = ↵+� = 1, or ↵ = � = 1/2 which recovers the choice made above in Eq. (2.7)

and Eq. (2.8) and leads to the parameterization of the S-matrix that will be used throughout

this paper2:

x = 1

2
r[cos(�) + cos(✓)] , y = 1

2
r[sin(�) + sin(✓)] ,

z = 1

2
r[� cos(�) + cos(✓)] , w = 1

2
r[� sin(�) + sin(✓)] , (2.15)

with � 2 [0, 2⇡] and ✓ 2 [0, 2⇡] and r = 1.

The fixed points of the RG in (x, y, z, w) coordinates are:

Ŝ 1 = (+1, 0, 0, 0) , Ŝ 3 = ( 0, 0, +1, 0) ,

Ŝ 2 = (�1, 0, 0, 0) , Ŝ 4 = ( 0, 0, �1, 0) . (2.16)

A geometrical description of scattering follows by mapping the Z2 basis to the u�v plane3

with u representing the 1̂ axis and v representing the (1̂+�̂ ·�̂)/2 axis. The fixed points sit on

2Another useful isotropic parameterization of the S-matrix is given by the Hopf-like coordinates,

x = r cos ⇠ sin ⌘ , y = r sin ⇠ sin ⌘ ,

z = r sin ⇠ cos ⌘ , w = �r cos ⇠ cos ⌘ . (2.14)

with ⇠ 2 [0, 2⇡) and ⌘ 2 [0,⇡].
3In what follows, the u � v plane will refer collectively to the x � z and y � w planes for the real and

imaginary parts of the S-matrix, respectively.
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Ŝ 1 = (+1, 0, 0, 0) , Ŝ 3 = ( 0, 0, +1, 0) ,
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4↵ [� sin(�) + sin(✓)] , (2.12)

Ŝ is independent of ↵ and �. Here we have defined � ⌘ 2�0 and ✓ ⌘ 2�1. The unitarity

constraints now take the form

1 = (x + (↵ + �) z)2 + (y + (↵ + �) w)2 ,

(↵ � �)
�
w

2 + z
2
�

= xz + yw . (2.13)

Requiring that the coordinate system (x, y, z, w) describe an isotropic space yields the con-

straints 3↵�� = ↵+� = 1, or ↵ = � = 1/2 which recovers the choice made above in Eq. (2.7)

and Eq. (2.8) and leads to the parameterization of the S-matrix that will be used throughout

this paper2:

x = 1

2
r[cos(�) + cos(✓)] , y = 1

2
r[sin(�) + sin(✓)] ,

z = 1

2
r[� cos(�) + cos(✓)] , w = 1

2
r[� sin(�) + sin(✓)] , (2.15)

with � 2 [0, 2⇡] and ✓ 2 [0, 2⇡] and r = 1.

The fixed points of the RG in (x, y, z, w) coordinates are:

Ŝ 1 = (+1, 0, 0, 0) , Ŝ 3 = ( 0, 0, +1, 0) ,

Ŝ 2 = (�1, 0, 0, 0) , Ŝ 4 = ( 0, 0, �1, 0) . (2.16)

A geometrical description of scattering follows by mapping the Z2 basis to the u�v plane3

with u representing the 1̂ axis and v representing the (1̂+�̂ ·�̂)/2 axis. The fixed points sit on

2Another useful isotropic parameterization of the S-matrix is given by the Hopf-like coordinates,

x = r cos ⇠ sin ⌘ , y = r sin ⇠ sin ⌘ ,

z = r sin ⇠ cos ⌘ , w = �r cos ⇠ cos ⌘ . (2.14)

with ⇠ 2 [0, 2⇡) and ⌘ 2 [0,⇡].
3In what follows, the u � v plane will refer collectively to the x � z and y � w planes for the real and

imaginary parts of the S-matrix, respectively.
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3.3 Embedding in R4

While the HS distance provides a metric on the space of S-matrices, it is convenient to use

view the view the two-dimensional space on which the S-matrix propagates as a geometric

embedding in a higher-dimensional space. Recall that in the chosen isotropic coordinates, the

first unitarity constraint determines a three-sphere of fixed radius r = 1:

x
2 + y

2 + z
2 + w

2 = r
2

. (3.10)

The isometry group of the three-sphere, S
3, is SO(4) which is also the isometry group of R4.

The six SO(4) generators can be constructed by considering the rotations in the six planes

that can be formed from the four cartesian coordinates. The second unitarity constraint,

Eq. (2.10), can be expressed in the two equivalent forms

(x ± z)2 + (y ± w)2 = r
2

. (3.11)

This leaves invariant two independent SO(2) transformations. In addition, there are six

discrete Z2 symmetries. Therefore, the isometry group of the two-dimensional space is

SO(2) ⌦ SO(2) ⌦ Z6

2 . (3.12)

As an embedding in R4, with metric given by

ds
2 = dx

2 + dy
2 + dz

2 + dw
2

, (3.13)

one finds the flat two-dimensional Euclidean metric

ds
2 = 1

2

�
d�

2 + d✓
2
�

. (3.14)

This metric describes the flat torus T2
⇠ S

1
⌦ S

1
2 R4, where S

1 is the circle with isometry

group SO(2).

3.4 Flat torus isometry group

Here the action of the isometry group on the variables � and ✓ will be given explicitly. As

SO(4) ⇠ SU(2) ⌦ SU(2), the generators of SO(4) may be given by the generators of the two

SU(2)’s, say Xi and Yj with i, j = 1, 2, 3. The two SO(2) isometries of the flat torus are then

X3 and Y1, where X3 is a simultaneous rotation in the x � y and z � w plane by the same

amount, while Y1 is a simultaneous rotation in the x�w and y�z plane by opposite amounts.

The action of X3 and Y1 on the angles � and ✓ are given in Table 1. Note that these are

X3 � 7! � + ✏ ✓ 7! ✓ + ✏

Y1 � 7! � + ✏ ✓ 7! ✓ � ✏

Table 1. Continuous isometries of the flat torus.

these are simply the translational symmetries that one would expect on a flat manifold. The

action of the six Z2 symmetries on the angles � and ✓ are given in Table 2. It is clear that

the conformal UV/IR symmetries of the LO in the ERE and in the conformal range model

are contained in the flat-torus isometries. This will be important in what follows.
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which defines the unit three-sphere S
3, and the projective constraint

ūv + v̄u = 0 = xz + yw . (2.10)

This choice of coordinates is by no means unique. A general parametrization of the S-matrix

is

Ŝ =
⇥
x(p) + i y(p)

⇤
1̂ +

⇥
z(p) + i w(p)

⇤ �
1̂� + �̂ · �̂↵

�
. (2.11)

With the coordinate choice

x = 1

4↵ [(3↵ � �) cos(�) + (↵ + �) cos(✓)] ,

y = 1

4↵ [(3↵ � �) sin(�) + (↵ + �) sin(✓)] ,

z = 1

4↵ [� cos(�) + cos(✓)] ,

w = 1

4↵ [� sin(�) + sin(✓)] , (2.12)

Ŝ is independent of ↵ and �. Here we have defined � ⌘ 2�0 and ✓ ⌘ 2�1. The unitarity

constraints now take the form

1 = (x + (↵ + �) z)2 + (y + (↵ + �) w)2 ,

(↵ � �)
�
w

2 + z
2
�

= xz + yw . (2.13)

Requiring that the coordinate system (x, y, z, w) describe an isotropic space yields the con-

straints 3↵�� = ↵+� = 1, or ↵ = � = 1/2 which recovers the choice made above in Eq. (2.7)

and Eq. (2.8) and leads to the parameterization of the S-matrix that will be used throughout

this paper2:

x = 1

2
r[cos(�) + cos(✓)] , y = 1

2
r[sin(�) + sin(✓)] ,

z = 1

2
r[� cos(�) + cos(✓)] , w = 1

2
r[� sin(�) + sin(✓)] , (2.15)

with � 2 [0, 2⇡] and ✓ 2 [0, 2⇡] and r = 1.

The fixed points of the RG in (x, y, z, w) coordinates are:

Ŝ 1 = (+1, 0, 0, 0) , Ŝ 3 = ( 0, 0, +1, 0) ,

Ŝ 2 = (�1, 0, 0, 0) , Ŝ 4 = ( 0, 0, �1, 0) . (2.16)

A geometrical description of scattering follows by mapping the Z2 basis to the u�v plane3

with u representing the 1̂ axis and v representing the (1̂+�̂ ·�̂)/2 axis. The fixed points sit on

2Another useful isotropic parameterization of the S-matrix is given by the Hopf-like coordinates,

x = r cos ⇠ sin ⌘ , y = r sin ⇠ sin ⌘ ,

z = r sin ⇠ cos ⌘ , w = �r cos ⇠ cos ⌘ . (2.14)

with ⇠ 2 [0, 2⇡) and ⌘ 2 [0,⇡].
3In what follows, the u � v plane will refer collectively to the x � z and y � w planes for the real and

imaginary parts of the S-matrix, respectively.
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Figure 2. The entanglement power obtained from Eq. (2.13) using the Nijmegen phase shift analysis
in Ref. [9] (dot-dashed red curve), from Eq. (2.41) using the scatterings length only (red curve), and
from the measure of curvature given by Eq. (2.42) (black curve).

Eq. (2.13) makes clear that the entanglement power is related to the distance of the u and v

coordinates from the origin. However, given that the entanglement power has support only

away from the fixed points, one might expect that when the momentum dependence of the

S-matrix is specified, the entanglement power will be directly related to �u,v(p).

2.4 Geometry of the S-matrix

2.4.1 Fixed points

The fixed points in (x, y, z, w) coordinates:

Ŝ 1 = +1̂ =) (+1, 0, 0, 0) ,

Ŝ 2 = �1̂ =) (�1, 0, 0, 0) ,

Ŝ 3 = +(1̂ + �̂ · �̂)/2 =) ( 0, 0, +1, 0) ,

Ŝ 4 = �(1̂ + �̂ · �̂)/2 =) ( 0, 0, �1, 0) . (2.17)

2.4.2 Quartics and the squere

The constraint of Eq. (2.8) can be removed to give the quartic algebraic curve

y
2
�
x

2 + y
2 + z

2
�

+ x
2
z
2 = y

2
. (2.18)

2.4.3 R4 coordinates and embeddings

The three-sphere of fixed radius r is

x
2 + y

2 + z
2 + w

2 = r
2 (2.19)
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Figure 2. The entanglement power obtained from Eq. (2.13) using the Nijmegen phase shift analysis
in Ref. [9] (dot-dashed red curve), from Eq. (2.41) using the scatterings length only (red curve), and
from the measure of curvature given by Eq. (2.42) (black curve).

Eq. (2.13) makes clear that the entanglement power is related to the distance of the u and v

coordinates from the origin. However, given that the entanglement power has support only

away from the fixed points, one might expect that when the momentum dependence of the

S-matrix is specified, the entanglement power will be directly related to �u,v(p).

2.4 Geometry of the S-matrix

2.4.1 Fixed points

The fixed points in (x, y, z, w) coordinates:

Ŝ 1 = +1̂ =) (+1, 0, 0, 0) ,

Ŝ 2 = �1̂ =) (�1, 0, 0, 0) ,

Ŝ 3 = +(1̂ + �̂ · �̂)/2 =) ( 0, 0, +1, 0) ,

Ŝ 4 = �(1̂ + �̂ · �̂)/2 =) ( 0, 0, �1, 0) . (2.17)

2.4.2 Quartics and the squere

The constraint of Eq. (2.8) can be removed to give the quartic algebraic curve
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Ŝ 2 = �1̂ =) (�1, 0, 0, 0) ,
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Ŝ 1 = +1̂ =) (+1, 0, 0, 0) ,
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3.3 Embedding in R4

While the HS distance provides a metric on the space of S-matrices, it is convenient to use

view the view the two-dimensional space on which the S-matrix propagates as a geometric

embedding in a higher-dimensional space. Recall that in the chosen isotropic coordinates, the

first unitarity constraint determines a three-sphere of fixed radius r = 1:

x
2 + y

2 + z
2 + w

2 = r
2

. (3.10)

The isometry group of the three-sphere, S
3, is SO(4) which is also the isometry group of R4.

The six SO(4) generators can be constructed by considering the rotations in the six planes

that can be formed from the four cartesian coordinates. The second unitarity constraint,

Eq. (2.10), can be expressed in the two equivalent forms

(x ± z)2 + (y ± w)2 = r
2

. (3.11)

This leaves invariant two independent SO(2) transformations. In addition, there are six

discrete Z2 symmetries. Therefore, the isometry group of the two-dimensional space is

SO(2) ⌦ SO(2) ⌦ Z6

2 . (3.12)

As an embedding in R4, with metric given by

ds
2 = dx

2 + dy
2 + dz

2 + dw
2

, (3.13)

one finds the flat two-dimensional Euclidean metric

ds
2 = 1

2

�
d�

2 + d✓
2
�

. (3.14)

This metric describes the flat torus T2
⇠ S

1
⌦ S

1
2 R4, where S

1 is the circle with isometry

group SO(2).

3.4 Flat torus isometry group

Here the action of the isometry group on the variables � and ✓ will be given explicitly. As

SO(4) ⇠ SU(2) ⌦ SU(2), the generators of SO(4) may be given by the generators of the two

SU(2)’s, say Xi and Yj with i, j = 1, 2, 3. The two SO(2) isometries of the flat torus are then

X3 and Y1, where X3 is a simultaneous rotation in the x � y and z � w plane by the same

amount, while Y1 is a simultaneous rotation in the x�w and y�z plane by opposite amounts.

The action of X3 and Y1 on the angles � and ✓ are given in Table 1. Note that these are

X3 � 7! � + ✏ ✓ 7! ✓ + ✏

Y1 � 7! � + ✏ ✓ 7! ✓ � ✏

Table 1. Continuous isometries of the flat torus.

these are simply the translational symmetries that one would expect on a flat manifold. The

action of the six Z2 symmetries on the angles � and ✓ are given in Table 2. It is clear that

the conformal UV/IR symmetries of the LO in the ERE and in the conformal range model

are contained in the flat-torus isometries. This will be important in what follows.
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a - + - + � 7! ⇡ � � ✓ 7! ⇡ � ✓

b + - + - � 7! �� ✓ 7! �✓

c + + - - � 7! ✓ ✓ 7! �

d + - - + � 7! �✓ ✓ 7! ��

e - + + - � 7! ⇡ � ✓ ✓ 7! ⇡ � �

f - - + + � 7! ⇡ + ✓ ✓ 7! ⇡ + �

Table 2. Discrete isometries of the flat torus. Here {+ � +�} corresponds to {x, y, z, w} 7!

{x, �y, z, �w} etc.

4 S-matrix theory of scattering

4.1 Action principle

The s-wave nucleon-nucleon S-matrix is a one-dimensional trajectory, i.e. a curve, that lives

on a flat torus, which is a two-dimensional Euclidean space with periodic boundary conditions

on the two coordinates, which are in correspondence with the singlet and triplet nucleon-

nucleon phase shifts. Straight line trajectories on this flat space are, of course, geodesics,

which are formally obtained by minimizing an action which represents a path in the space.

In general, S-matrix trajectories will not be geodesics and therefore external forces must be

present. The action for a general parameterization of a curve on a space with metric tensor

gab can be taken as9

S =

Z
L

⇣
X , Ẋ

⌘
d� =

Z ⇣
N�2

gabẊ
a
Ẋ

b
� V(X )

⌘
Nd� (4.1)

where � is the parameter (a�ne or ina�ne), Ẋ ⌘ dX/d�, and V(X ) is an external potential

which is assumed to be a function of X only10. Minimizing the action or equivalently solving

the Euler-Langrange equations gives the trajectory equation

Ẍ
a + g�

a
bcẊ

b
Ẋ

c = (�)Ẋ a
�

1

2
N2

g
ab

@bV(X ) , (4.2)
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Here  is the ina�nity and � is an a�ne parameter. For constant potential, the trajectory

equation reduces to the geodesic equation.

9Note that this form avoids the square root in the Lagrangian while allowing ina�ne parametrizations.
10This assumption will have to be relaxed when considering projections onto parts of a space.
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4.2 Geodesics on the flat torus

With X
1 = � and X

2 = ✓ and omitting the external force term, the equations for geodesics

are then read o↵ to be:

�̈ = (�)�̇ ,

✓̈ = (�)✓̇ . (4.4)

In the a�ne case, � = � and  = 0, � and ✓ are linear functions of �, and the most general

solution is clearly a straight line in the Euclidean (�-✓) plane. In the non-a�ne case � and

✓ can be arbitrary functions of �, and the most general solution is again a straight line in

the Euclidean (�-✓) plane. For instance, say � = f(�) and ✓ = g(�) with f and g arbitrary

di↵erentiable functions. Then,

�̈
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=

✓̈

✓̇
= (�) (4.5)

implies f = c1 + c2 g, giving the desired result. In this way, using the ina�nity, the e↵ective

range expansion can be built up to any order. For instance, to leading order, assuming that

� = ✏ ✓ with ✏ = ±1 and � = p, one can choose � = ✏ ✓ = �2 tan�1(ap) with

(p) = �
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At NLO one can choose � = ✏ ✓ = �2 tan�1
�
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with a corresponding , and so on.

4.3 Entanglement forces and the ERE

Recall that the entanglement power is

E(Ŝ) = NP sin2 (� � ✓) . (4.7)

Note that while the entanglement power preserves all of the discrete isometries, only transla-

tions in one direction on the flat torus are preserved:

SO(2)X3 ⌦ SO(2)Y1 ! SO(2)X3 (4.8)

Therefore in order to find a non-geodesic solution with � 6= ✓+n⇡, an external entangling

force must be present. The general equation, Eq. (4.2) gives

�̈ = (�)�̇ � N2
@�V ,

✓̈ = (�)✓̇ � N2
@✓V . (4.9)

If a solution for � and ✓ is specified, these two coupled equations have three unknowns given

by the ina�nity and the components of the force in the two directions in the plane.
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a - + - + � 7! ⇡ � � ✓ 7! ⇡ � ✓

b + - + - � 7! �� ✓ 7! �✓

c + + - - � 7! ✓ ✓ 7! �
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Table 2. Discrete isometries of the flat torus. Here {+ � +�} corresponds to {x, y, z, w} 7!

{x, �y, z, �w} etc.

4 S-matrix theory of scattering

4.1 Action principle

The s-wave nucleon-nucleon S-matrix is a one-dimensional trajectory, i.e. a curve, that lives

on a flat torus, which is a two-dimensional Euclidean space with periodic boundary conditions

on the two coordinates, which are in correspondence with the singlet and triplet nucleon-

nucleon phase shifts. Straight line trajectories on this flat space are, of course, geodesics,

which are formally obtained by minimizing an action which represents a path in the space.

In general, S-matrix trajectories will not be geodesics and therefore external forces must be

present. The action for a general parameterization of a curve on a space with metric tensor

gab can be taken as9
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where � is the parameter (a�ne or ina�ne), Ẋ ⌘ dX/d�, and V(X ) is an external potential

which is assumed to be a function of X only10. Minimizing the action or equivalently solving

the Euler-Langrange equations gives the trajectory equation
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Here  is the ina�nity and � is an a�ne parameter. For constant potential, the trajectory

equation reduces to the geodesic equation.

9Note that this form avoids the square root in the Lagrangian while allowing ina�ne parametrizations.
10This assumption will have to be relaxed when considering projections onto parts of a space.
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Ṅ

N
, N = exp

✓Z �

(s)ds

◆
. (4.3)

Here  is the ina�nity. For constant potential, the trajectory equation reduces to the geodesic

equation.

9Note that this form avoids the square root in the Lagrangian while allowing ina�ne parametrizations.
10This assumption will have to be relaxed when considering projections onto parts of a space.

– 20 –

a - + - + � 7! ⇡ � � ✓ 7! ⇡ � ✓

b + - + - � 7! �� ✓ 7! �✓

c + + - - � 7! ✓ ✓ 7! �

d + - - + � 7! �✓ ✓ 7! ��

e - + + - � 7! ⇡ � ✓ ✓ 7! ⇡ � �

f - - + + � 7! ⇡ + ✓ ✓ 7! ⇡ + �

Table 2. Discrete isometries of the flat torus. Here {+ � +�} corresponds to {x, y, z, w} 7!

{x, �y, z, �w} etc.

4 S-matrix theory of scattering

4.1 Action principle

The s-wave nucleon-nucleon S-matrix is a one-dimensional trajectory, i.e. a curve, that lives

on a flat torus, which is a two-dimensional Euclidean space with periodic boundary conditions

on the two coordinates, which are in correspondence with the singlet and triplet nucleon-

nucleon phase shifts. Straight line trajectories on this flat space are, of course, geodesics,

which are formally obtained by minimizing an action which represents a path in the space.

In general, S-matrix trajectories will not be geodesics and therefore external forces must be

present. The action for a general parameterization of a curve on a space with metric tensor

gab can be taken as9

S =

Z
L

⇣
X , Ẋ
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Ṅ

N
=

d

d�
ln

d�

d�
. (4.3)

Here  is the ina�nity and � is an a�ne parameter. For constant potential, the trajectory

equation reduces to the geodesic equation.

9Note that this form avoids the square root in the Lagrangian while allowing ina�ne parametrizations.
10This assumption will have to be relaxed when considering projections onto parts of a space.

– 20 –

“inaffinity”

C$-$I$]$-7"01."/(0$*-"7$3.'"7.*&.'$('"I*&$5$.&"84"/"(*-'.+3/0$3."5*+(.

V-"01."5%/0"0*+)'
4.2 Geodesics on the flat torus

With X
1 = � and X

2 = ✓ and omitting the external force term, the equations for geodesics

are then read o↵ to be:

�̈ = (�)�̇ ,

✓̈ = (�)✓̇ . (4.4)

In the a�ne case, � = � and  = 0, � and ✓ are linear functions of �, and the most general

solution is clearly a straight line in the Euclidean (�-✓) plane. In the non-a�ne case � and

✓ can be arbitrary functions of �, and the most general solution is again a straight line in

the Euclidean (�-✓) plane. For instance, say � = f(�) and ✓ = g(�) with f and g arbitrary

di↵erentiable functions. Then,

�̈

�̇
=

✓̈

✓̇
= (�) (4.5)

implies f = c1 + c2 g, giving the desired result. In this way, using the ina�nity, the e↵ective

range expansion can be built up to any order. For instance, to leading order, assuming that

� = ✏ ✓ with ✏ = ±1 and � = p, one can choose � = ✏ ✓ = �2 tan�1(ap) with

(p) = �
2a

2
p

1 + a2p2
. (4.6)

At NLO one can choose � = ✏ ✓ = �2 tan�1
�
ap �

1

2
a

2
rp

3
�

with a corresponding , and so on.

4.3 Entanglement forces and the ERE

Recall that the entanglement power is

E(Ŝ) = NP sin2 (� � ✓) . (4.7)

Note that while the entanglement power preserves all of the discrete isometries, only transla-

tions in one direction on the flat torus are preserved:

SO(2)X3 ⌦ SO(2)Y1 ! SO(2)X3 (4.8)

Therefore in order to find a non-geodesic solution with � 6= ✓+n⇡, an external entangling

force must be present. The general equation, Eq. (4.2) gives

�̈ = (�)�̇ � N2
@�V ,

✓̈ = (�)✓̇ � N2
@✓V . (4.9)

If a solution for � and ✓ is specified, these two coupled equations have three unknowns given

by the ina�nity and the components of the force in the two directions in the plane.
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Figure 2. The entanglement power obtained from Eq. (2.13) using the Nijmegen phase shift analysis
in Ref. [9] (dot-dashed red curve), from Eq. (2.41) using the scatterings length only (red curve), and
from the measure of curvature given by Eq. (2.42) (black curve).

Eq. (2.13) makes clear that the entanglement power is related to the distance of the u and v

coordinates from the origin. However, given that the entanglement power has support only

away from the fixed points, one might expect that when the momentum dependence of the

S-matrix is specified, the entanglement power will be directly related to �u,v(p).

2.4 Geometry of the S-matrix

2.4.1 Fixed points

The fixed points in (x, y, z, w) coordinates:

Ŝ 1 = +1̂ =) (+1, 0, 0, 0) ,

Ŝ 2 = �1̂ =) (�1, 0, 0, 0) ,

Ŝ 3 = +(1̂ + �̂ · �̂)/2 =) ( 0, 0, +1, 0) ,

Ŝ 4 = �(1̂ + �̂ · �̂)/2 =) ( 0, 0, �1, 0) . (2.17)

2.4.2 Quartics and the squere

The constraint of Eq. (2.8) can be removed to give the quartic algebraic curve

y
2
�
x

2 + y
2 + z

2
�

+ x
2
z
2 = y

2
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2.4.3 R4 coordinates and embeddings

The three-sphere of fixed radius r is
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Ŝ 1 = +1̂ =) (+1, 0, 0, 0) ,
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Ŝ 3 = +(1̂ + �̂ · �̂)/2 =) ( 0, 0, +1, 0) ,
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Eq. (2.13) makes clear that the entanglement power is related to the distance of the u and v

coordinates from the origin. However, given that the entanglement power has support only

away from the fixed points, one might expect that when the momentum dependence of the

S-matrix is specified, the entanglement power will be directly related to �u,v(p).
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Figure 8. The S-matrix embedding in R4 as the flat torus. The blue dots are the fixed points of the
S-matrix and the image fixed points are within dotted circles. All diagonal lines are geodesics. The
solid blue lines are geodesics with vanishing entanglement, and the dotted black lines are geodesics
with non-vanishing entanglement.

LO in the ERE

Consider LO in the ERE. With � = p, the solution is

� = �2 tan�1(a0p) , ✓ = �2 tan�1(a1p) , (4.10)

and is exhibited in Fig. (8) in the physical case. The conformal transformation p 7! (|a1a0|p)�1

is in correspondence with the isometry Ze
2

for a1a0 > 0 and Zf
2

for a1a0 < 0. These isometries

leave the angle � + ✏ ✓ invariant with ✏ = �1 for a1a0 > 0 and ✏ = +1 for a1a0 < 0. For this

solution, V(�, ✓) = V(� + ✏ ✓), which implies @�V = ✏ @✓V, and the system is integrable: the

equations decouple to

�̈ + ✏ ✓̈ = 

⇣
�̇ + ✏ ✓̇

⌘
+ 2 F ,

�̈ � ✏ ✓̈ = 

⇣
�̇ � ✏ ✓̇

⌘
, (4.11)

where the external force is given by F ⌘ �N2
@�V.

The ina�nity and the force are determined algebraically to be

N = c1

⇣
�̇ � ✏ ✓̇

⌘
,  =

 
�̈ � ✏ ✓̈

�̇ � ✏ ✓̇

!
,

F = �✏

 
�̈ ✓̇ � ✓̈ �̇

�̇ � ✏ ✓̇

!
, (4.12)
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Figure 3. The entanglement power obtained from Eq. (2.18) using the Nijmegen phase shift analysis
in Ref. [13] (dot-dashed red curve), from Eq. (2.30) using the scatterings length only (red curve), and
from the measure of curvature given by Eq. (??) (black curve).

and �̂(Ŝ) = 0 at the fixed points where Ŝ2 = 1̂. In the Z2 basis one then has

�̂(Ŝ) = �u(p) 1̂ + �v(p)
�
1̂ + �̂ · �̂

�
/2 , (2.21)

with

�u(p) ⌘ p
d

dp
u(p) , �v(p) ⌘ p

d

dp
v(p) . (2.22)

Eq. (2.18) makes clear that the entanglement power is related to the distance of the u and v

coordinates from the origin. However, given that the entanglement power has support only

away from the fixed points, one might expect that when the momentum dependence of the

S-matrix is specified, the entanglement power will be directly related to �u,v(p). Indeed,

generalizing the expression for uv given in Eq. (2.42) to a linear combination of �u and �v

with complex coe�cients, it is straightforward to find an expression for the entanglement

power in terms of the beta functions alone

E(Ŝ) =
NP
4

����
�v̄(p)�u(p) � �ū(p)�v(p)

�2
ū(p) � �2

v̄(p)

����
2

. (2.23)

2.3 E↵ective range theory at leading order

At LO in the ERE, the S-matrix is completely determined by the scattering lengths and in

terms of the coordinate basis is

u(p) =
1

2

✓
1 � ia1p

1 + ia1p
+

1 � ia0p

1 + ia0p

◆
, v(p) =

1

2

✓
1 � ia1p

1 + ia1p
�

1 � ia0p

1 + ia0p

◆
. (2.24)

In terms of phase shifts,

� = �2 tan�1(a0p) , ✓ = �2 tan�1(a1p) . (2.25)
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where c1 > 0 is an integration constant. In terms of the scattering lengths, one finds

N = �
2c1 (a0 � ✏ a1)

�
1 � ✏ a0a1p

2
�

�
1 + a2

0
p2

� �
1 + a2

1
p2

� , (p) = �
2a

2
0
p

1 + a2
0
p2

�
2a

2
1
p

1 + a2
1
p2

�
2a0a1p

✏ � a0a1p
2
,(4.13)

and the force is

F = �
4✏ a0a1p

�
a

2
1
� a

2
0

�
�
1 + a2

0
p2

� �
1 + a2

1
p2

� ⇥
a1

�
1 + a2

0
p2

�
✏ � a0

�
1 + a2

1
p2

� ⇤ . (4.14)

Integrating the force gives the external potential,

V(�, ✓) = c2 tan2
�

1

2
(� + ✏ ✓)

�
, (4.15)

where

c2 = �
✏ a0a1

(a0 � ✏ a1)
2
c2
1

=
|a0a1|

(|a0| + |a1|)
2
c2
1

. (4.16)

It is worth considering why the entangling potential must take the form of Eq. (4.15). It is

clear from the solution Eq. (4.10), that for any finite values of the scattering lengths, only

the Ŝ 1 and Ŝ 2 fixed points (and their images) can be accessed by an S-matrix trajectory.

Therefore the potential at these fixed points must be finite. And because of the symmetry

implied by the condition that � + ✏ ✓ be invariant, the potential must take the same constant

value at each fixed point. As the Ŝ 3 and Ŝ 4 fixed points (and their images) cannot be

accessed by an S-matrix trajectory, the potential must be infinite at these fixed points. (See

Fig. (10).) On the flat torus, the potential must be a harmonic function and therefore these

constraints imply that V is proportional to sec(1

2
(� + ✏ ✓)) to some even power. Shifting the

potential by a constant to give vanishing potential at the accessible fixed points then gives

Eq. (4.15). Of course, if one of the channels is at unitarity, then the potential changes form;

for instance, if a0 is taken to negative infinity and a1 is held fixed at its physical value, then

the S-matrix trajectory begins at fixed point Ŝ 3 and moves to Ŝ 2 (along a geodesic) with

potential given by cot2(1

2
✓).

It is convenient to define the conformal derivative and coordinates

D ⌘ p
d

dp
, F ⌘ p

2 F , Fv
a ⌘ (1 + p ) DXa . (4.17)

The trajectory equations are then

D
2
� = Fv

� + F ,

D
2
✓ = Fv

� + ✏ F , (4.18)

which have the manifest conformal invariance

D ! �D , � $ ✏✓ , F ! F , Fv
� $ ✏Fv

✓ . (4.19)
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transformation on the momenta,

p 7!
1

|a1a0|p
. (2.26)

This invariance, generalized from single-channel scattering, is an intrinsic property of the

LO ERE S-matrix —at finite, non-zero values of the scattering lengths— that is not visible

in the leading-order EFT action. The two fixed points of the conformal transformation are

at p = ±
p

|a0a1|
�1. Therefore, for a given trajectory, only one of the fixed points of the

transformation appears in the physical (scattering) region (p � 0) and lies on the axis of

reflection of the corresponding isometry (the diamonds in Fig. (4)).

From Eq. (2.26), it is straightforward to find the action of the conformal transformation

on the coordinates and angles:

a1a0 < 0 : (x, z) ! (�x, z) , (y, w) ! (�y, w) =) (u, v) ! (�u, v) ,

(�, ✓) ! (✓ ⌥ ⇡, � ± ⇡) ,

a1a0 > 0 : (x, z) ! (�x, z) , (y, w) ! (y, �w) =) (u, v) ! (�ū, v̄) ,

(�, ✓) ! (�✓ ± ⇡, �� ± ⇡) . (2.27)

For an illustration of the isometries with the scattering length magnitudes fixed to the physical

case but with signs flipped, see Fig. (5).

Figure 5. Rhombus in the u � v plane with fixed points at the vertices. The solid red curves
corresponds to the real part of Ŝ, and the solid orange curves corresponds to the imaginary part of Ŝ
at LO in the ERE.

The S-matrix beta functions are easily found to be

p
d

dp
v(p) = u(p)v(p) , p

d

dp
u(p) = 1

2

�
u(p)2 + v(p)2 � 1

�
. (2.28)
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Figure 9. Heat maps on the flat torus illustrating regions of equi-entanglement and equi-potential.
The red curve in both panels is the S-matrix trajectory at LO in the ERE. The EP of the S-matrix is
shown in the left panel. Lighter shade indicates smaller EP. The external potential given by Eq. (4.14)
is shown in the right panel. Lighter shade indicates smaller potential.

Integrating the force gives the external potential,

V(�, ✓) = c2 tan2
�
1

2
(�+ ✏ ✓)

�
, (4.14)

where

c2 =
|a0a1|

(|a0|+ |a1|)
2
c2
1

. (4.15)

With c1 = 1, c2 is a dimensionless coupling constant that ranges from 0 to 0.25. In the

physical case c2 = 0.152. The potential is constrained by the assumed discrete symmetries

and, defined over the entire manifold, is invariant with respect to the SO(2)✏ translational

symmetry. Therefore, only in the doubly-(un)bound case (✏ = �1), does the potential share

the symmetry of the entanglement power. This asymmetry is a fundamental feature of the

geometric description. The relative sign of the scattering lengths picks one preferred direction

on the flat torus. However, the entanglement power universally breaks the SO(2)+ isometry

of the flat torus. Heat maps for the entanglement power and the external potential, V(�, ✓),
are shown for the physical case in Fig. (9). It is worth re-considering the plot of the EP given

in Fig. (3) using the heat map as a guide; the S-matrix trajectory leaves the initial fixed

point, ascends to a maximum of the EP, then descends to the zero of the EP at the UV/IR

conformal fixed point which lies on the blue geodesic, and then rises again to the maximum

before hitting the final fixed point.

It is straightforward to understand why the potential takes the simple harmonic form of

Eq. (4.14). It follows from the solution Eq. (4.9), that for any finite values of the scattering

lengths, only the Ŝ 1 and Ŝ 2 fixed points (and their images) can be accessed by an S-matrix
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the Ŝ 1 and Ŝ 2 fixed points (and their images) can be accessed by an S-matrix trajectory.

Therefore the potential at these fixed points must be finite. And because of the symmetry

implied by the condition that � + ✏ ✓ be invariant, the potential must take the same constant

value at each fixed point. As the Ŝ 3 and Ŝ 4 fixed points (and their images) cannot be

accessed by an S-matrix trajectory, the potential must be infinite at these fixed points. (See

Fig. (10).) On the flat torus, the potential must be a harmonic function and therefore these

constraints imply that V is proportional to sec(1

2
(� + ✏ ✓)) to some even power. Shifting the

potential by a constant to give vanishing potential at the accessible fixed points then gives

Eq. (4.15). Of course, if one of the channels is at unitarity, then the potential changes form;

for instance, if a0 is taken to negative infinity and a1 is held fixed at its physical value, then
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It is worth considering why the entangling potential must take the form of Eq. (4.15). It is

clear from the solution Eq. (4.10), that for any finite values of the scattering lengths, only

the Ŝ 1 and Ŝ 2 fixed points (and their images) can be accessed by an S-matrix trajectory.

Therefore the potential at these fixed points must be finite. And because of the symmetry

implied by the condition that � + ✏ ✓ be invariant, the potential must take the same constant

value at each fixed point. As the Ŝ 3 and Ŝ 4 fixed points (and their images) cannot be

accessed by an S-matrix trajectory, the potential must be infinite at these fixed points. (See

Fig. (10).) On the flat torus, the potential must be a harmonic function and therefore these

constraints imply that V is proportional to sec(1

2
(� + ✏ ✓)) to some even power. Shifting the

potential by a constant to give vanishing potential at the accessible fixed points then gives

Eq. (4.15). Of course, if one of the channels is at unitarity, then the potential changes form;

for instance, if a0 is taken to negative infinity and a1 is held fixed at its physical value, then

the S-matrix trajectory begins at fixed point Ŝ 3 and moves to Ŝ 2 (along a geodesic) with

potential given by cot2(1

2
✓).

It is convenient to define the conformal derivative and coordinates

D ⌘ p
d

dp
, F ⌘ p

2 F , Fv
a ⌘ (1 + p ) DXa . (4.17)

The trajectory equations are then

D
2
� = Fv

� + F ,

D
2
✓ = Fv

� + ✏ F , (4.18)

which have the manifest conformal invariance

D ! �D , � $ ✏✓ , F ! F , Fv
� $ ✏Fv

✓ . (4.19)
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where c1 > 0 is an integration constant. In terms of the scattering lengths, one finds

N = �
2c1 (a0 � ✏ a1)
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�

�
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� �
1 + a2
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p2

� , (p) = �
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2
0
p

1 + a2
0
p2

�
2a

2
1
p

1 + a2
1
p2

�
2a0a1p

✏ � a0a1p
2
,(4.13)

and the force is
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� �
1 + a2
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p2

� ⇥
a1

�
1 + a2

0
p2

�
✏ � a0

�
1 + a2

1
p2

� ⇤ . (4.14)
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4.2 Geodesics on the flat torus

With X
1 = � and X

2 = ✓ and omitting the external force term, the equations for geodesics

are then read o↵ to be:

�̈ = (�)�̇ ,

✓̈ = (�)✓̇ . (4.4)

In the a�ne case, � = � and  = 0, � and ✓ are linear functions of �, and the most general

solution is clearly a straight line in the Euclidean (�-✓) plane. In the non-a�ne case � and

✓ can be arbitrary functions of �, and the most general solution is again a straight line in

the Euclidean (�-✓) plane. For instance, say � = f(�) and ✓ = g(�) with f and g arbitrary

di↵erentiable functions. Then,

�̈

�̇
=

✓̈

✓̇
= (�) (4.5)

implies f = c1 + c2 g, giving the desired result. In this way, using the ina�nity, the e↵ective

range expansion can be built up to any order. For instance, to leading order, assuming that

� = ✏ ✓ with ✏ = ±1 and � = p, one can choose � = ✏ ✓ = �2 tan�1(ap) with

(p) = �
2a

2
p

1 + a2p2
. (4.6)

At NLO one can choose � = ✏ ✓ = �2 tan�1
�
ap �

1

2
a

2
rp

3
�

with a corresponding , and so on.

4.3 Entanglement forces and the ERE

Recall that the entanglement power is

E(Ŝ) = NP sin2 (� � ✓) . (4.7)

Note that while the entanglement power preserves all of the discrete isometries, only transla-

tions in one direction on the flat torus are preserved:

SO(2)X3 ⌦ SO(2)Y1 ! SO(2)X3 (4.8)

Therefore in order to find a non-geodesic solution with � 6= ✓+n⇡, an external entangling

force must be present. The general equation, Eq. (4.2) gives

�̈ = (�)�̇ � N2
@�V ,

✓̈ = (�)✓̇ � N2
@✓V . (4.9)

If a solution for � and ✓ is specified, these two coupled equations have three unknowns given

by the ina�nity and the components of the force in the two directions in the plane.
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Figure 9. Heat maps on the flat torus illustrating regions of equi-entanglement and equi-potential.
The red curve in both panels is the S-matrix trajectory at LO in the ERE. The EP of the S-matrix is
shown in the left panel. Lighter shade indicates smaller EP. The external potential given by Eq. (4.14)
is shown in the right panel. Lighter shade indicates smaller potential.

Integrating the force gives the external potential,

V(�, ✓) = c2 tan2
�
1

2
(�+ ✏ ✓)

�
, (4.14)

where

c2 =
|a0a1|

(|a0|+ |a1|)
2
c2
1

. (4.15)

With c1 = 1, c2 is a dimensionless coupling constant that ranges from 0 to 0.25. In the

physical case c2 = 0.152. The potential is constrained by the assumed discrete symmetries

and, defined over the entire manifold, is invariant with respect to the SO(2)✏ translational

symmetry. Therefore, only in the doubly-(un)bound case (✏ = �1), does the potential share

the symmetry of the entanglement power. This asymmetry is a fundamental feature of the

geometric description. The relative sign of the scattering lengths picks one preferred direction

on the flat torus. However, the entanglement power universally breaks the SO(2)+ isometry

of the flat torus. Heat maps for the entanglement power and the external potential, V(�, ✓),
are shown for the physical case in Fig. (9). It is worth re-considering the plot of the EP given

in Fig. (3) using the heat map as a guide; the S-matrix trajectory leaves the initial fixed

point, ascends to a maximum of the EP, then descends to the zero of the EP at the UV/IR

conformal fixed point which lies on the blue geodesic, and then rises again to the maximum

before hitting the final fixed point.

It is straightforward to understand why the potential takes the simple harmonic form of

Eq. (4.14). It follows from the solution Eq. (4.9), that for any finite values of the scattering

lengths, only the Ŝ 1 and Ŝ 2 fixed points (and their images) can be accessed by an S-matrix
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transformation on the momenta,

p 7!
1

|a1a0|p
. (2.26)

This invariance, generalized from single-channel scattering, is an intrinsic property of the

LO ERE S-matrix —at finite, non-zero values of the scattering lengths— that is not visible

in the leading-order EFT action. The two fixed points of the conformal transformation are

at p = ±
p

|a0a1|
�1. Therefore, for a given trajectory, only one of the fixed points of the

transformation appears in the physical (scattering) region (p � 0) and lies on the axis of

reflection of the corresponding isometry (the diamonds in Fig. (4)).

From Eq. (2.26), it is straightforward to find the action of the conformal transformation

on the coordinates and angles:

a1a0 < 0 : (x, z) ! (�x, z) , (y, w) ! (�y, w) =) (u, v) ! (�u, v) ,

(�, ✓) ! (✓ ⌥ ⇡, � ± ⇡) ,

a1a0 > 0 : (x, z) ! (�x, z) , (y, w) ! (y, �w) =) (u, v) ! (�ū, v̄) ,

(�, ✓) ! (�✓ ± ⇡, �� ± ⇡) . (2.27)

For an illustration of the isometries with the scattering length magnitudes fixed to the physical

case but with signs flipped, see Fig. (5).

Figure 5. Rhombus in the u � v plane with fixed points at the vertices. The solid red curves
corresponds to the real part of Ŝ, and the solid orange curves corresponds to the imaginary part of Ŝ
at LO in the ERE.

The S-matrix beta functions are easily found to be

p
d

dp
v(p) = u(p)v(p) , p

d

dp
u(p) = 1

2

�
u(p)2 + v(p)2 � 1

�
. (2.28)
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which the phase shifts di↵er by ⇡/2 (the blue diamond in Fig. (2)). The EP is plotted for the

Nijmegen phase shift analysis [18] in Fig. (3). In addition, the EP vanishes at the four fixed

points of the renormalization group. In general, the EP vanishes when

Ŝ = e
i2�0Ŝ 1 or Ŝ = �e

i2�0Ŝ 3 . (2.21)

Therefore, in the absence of EP, the S-matrix is characterized by two curves that connect the

fixed points Ŝ 1 and Ŝ 2 and Ŝ 3 and Ŝ 4 via the flow of the single phase shift �0(p) from 0

to ⇡/2.

Figure 3. The EP obtained from Eq. (2.19) using the Nijmegen phase shift analysis in Ref. [18]
(dot-dashed red curve), from Eq. (2.33) using the scattering length only (red curve).

Adapting momentum flow to the nucleon-nucleon system, consider the S-matrix under

the action of a momentum dilatation p 7! e
✏
p. For small ✏,

�̂(Ŝ) ⌘ p
d

dp
Ŝ(p) =

1

✏

⇣
Ŝ(e✏p)� Ŝ(p)

⌘
, (2.22)

and �̂(Ŝ) = 0 at the four fixed points where Ŝ2 = 1̂. In the Z2 basis one then has

�̂(Ŝ) = �u(p) 1̂ + �v(p)
�
1̂+ �̂ · �̂

�
/2 , (2.23)

with

�u(p) ⌘ p
d

dp
u(p) , �v(p) ⌘ p

d

dp
v(p) . (2.24)

Eq. (2.20) makes clear that the EP is related to the distance of the u and v coordinates from

the origin. However, given that the EP has support only away from the fixed points, one

might expect that when the momentum dependence of the S-matrix is specified, the EP will

be directly related to �u,v(p). Indeed, generalizing the expression for uv given in Eq. (2.45)
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3.3 Embedding in R4

While the HS distance provides a metric on the space of S-matrices, it is convenient to use

view the view the two-dimensional space on which the S-matrix propagates as a geometric

embedding in a higher-dimensional space. Recall that in the chosen isotropic coordinates, the

first unitarity constraint determines a three-sphere of fixed radius r = 1:

x2 + y2 + z2 + w2 = r2 . (3.10)

The isometry group of the three-sphere, S3, is SO(4) which is also the isometry group of R4.

The six SO(4) generators can be constructed by considering the rotations in the six planes

that can be formed from the four cartesian coordinates. The second unitarity constraint,

Eq. (2.10), can be expressed in the two equivalent forms

(x ± z)2 + (y ± w)2 = r2 . (3.11)

This leaves invariant two independent SO(2) transformations. In addition, there are six

discrete Z2 symmetries. Therefore, the isometry group of the two-dimensional space is

SO(2) ⌦ SO(2) ⌦ Z6

2 . (3.12)

As an embedding in R4, with metric given by

ds2 = dx2 + dy2 + dz2 + dw2 , (3.13)

one finds the flat two-dimensional Euclidean metric

ds2 = 1

2

�
d�2 + d✓2

�
. (3.14)

This metric describes the flat torus T2
⇠ S1

⌦ S1
2 R4, where S1 is the circle with isometry

group SO(2).

3.4 Flat torus isometry group

Here the action of the isometry group on the variables � and ✓ will be given explicitly. As

SO(4) ⇠ SU(2) ⌦ SU(2), the generators of SO(4) may be given by the generators of the two

SU(2)’s, say Xi and Yj with i, j = 1, 2, 3. The two SO(2) isometries of the flat torus are then

X3 and Y1, where X3 is a simultaneous rotation in the x � y and z � w plane by the same

amount, while Y1 is a simultaneous rotation in the x�w and y�z plane by opposite amounts.

The action of X3 and Y1 on the angles � and ✓ are given in Table 1. Note that these are

X3 � 7! � + ✏ ✓ 7! ✓ + ✏

Y1 � 7! � + ✏ ✓ 7! ✓ � ✏

Table 1. Continuous isometries of the flat torus.

these are simply the translational symmetries that one would expect on a flat manifold. The

action of the six Z2 symmetries on the angles � and ✓ are given in Table 2. It is clear that

the conformal UV/IR symmetries of the LO in the ERE and in the conformal range model

are contained in the flat-torus isometries. This will be important in what follows.
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3.3 Embedding in R4

While the HS distance provides a metric on the space of S-matrices, it is convenient to use

view the view the two-dimensional space on which the S-matrix propagates as a geometric

embedding in a higher-dimensional space. Recall that in the chosen isotropic coordinates, the

first unitarity constraint determines a three-sphere of fixed radius r = 1:

x2 + y2 + z2 + w2 = r2 . (3.10)

The isometry group of the three-sphere, S3, is SO(4) which is also the isometry group of R4.

The six SO(4) generators can be constructed by considering the rotations in the six planes

that can be formed from the four cartesian coordinates. The second unitarity constraint,

Eq. (2.10), can be expressed in the two equivalent forms

(x ± z)2 + (y ± w)2 = r2 . (3.11)

This leaves invariant two independent SO(2) transformations. In addition, there are six

discrete Z2 symmetries. Therefore, the isometry group of the two-dimensional space is

SO(2) ⌦ SO(2) ⌦ Z6

2 . (3.12)

As an embedding in R4, with metric given by

ds2 = dx2 + dy2 + dz2 + dw2 , (3.13)

one finds the flat two-dimensional Euclidean metric

ds2 = 1

2

�
d�2 + d✓2

�
. (3.14)

This metric describes the flat torus T2
⇠ S1

⌦ S1
2 R4, where S1 is the circle with isometry

group SO(2).

3.4 Flat torus isometry group

Here the action of the isometry group on the variables � and ✓ will be given explicitly. As

SO(4) ⇠ SU(2) ⌦ SU(2), the generators of SO(4) may be given by the generators of the two

SU(2)’s, say Xi and Yj with i, j = 1, 2, 3. The two SO(2) isometries of the flat torus are then

X3 and Y1, where X3 is a simultaneous rotation in the x � y and z � w plane by the same

amount, while Y1 is a simultaneous rotation in the x�w and y�z plane by opposite amounts.

The action of X3 and Y1 on the angles � and ✓ are given in Table 1. Note that these are

X3 � 7! � + ✏ ✓ 7! ✓ + ✏

Y1 � 7! � + ✏ ✓ 7! ✓ � ✏

Table 1. Continuous isometries of the flat torus.

these are simply the translational symmetries that one would expect on a flat manifold. The

action of the six Z2 symmetries on the angles � and ✓ are given in Table 2. It is clear that

the conformal UV/IR symmetries of the LO in the ERE and in the conformal range model

are contained in the flat-torus isometries. This will be important in what follows.
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Figure 2. Left panel: the range of tangent vectors on the flat torus allowed by the Wigner bound is
superposed on Fig. (1). The purple trajectory in the bottom left quadrant has zero e↵ective range and
is seen to be consistent with the the tangent-vector conditions. The red trajectory in the bottom left
quadrant has positive e↵ective ranges and is seen to violate the tangent-vector conditions, while the
trajectory in the top right quadrant has negative e↵ective ranges and is consistent with the conditions.
Right panel: by matching the allowed tangent vectors at the boundaries of each quadrant it is found
that S-matrix trajectories can only exit a quadrant via the upper or right edge.

4.2.2 Causal singularities of the S-matrix

In addition to Wigner bounds, causality in non-relativistic scattering is manifest in various

constraints on the analytic structure of the S-matrix in the complex-momentum plane [5–

7]. The simplicity of the S-matrix models with momentum-inversion symmetry reveal these

constraints and their relation with the Wigner bound in straightforward fashion. The s-wave

S-matrices with momentum inversion symmetry are ratios of polynomials of second degree

and can thus be expressed as

Ss ⌘

�
p + p(1)

s
� �

p + p(2)
s

�
�
p � p(1)

s
� �

p � p(2)
s

� , (4.8)

and

p(1,2)
s =

1

rs

✓
i ±

r
2rs

as
� 1

◆
. (4.9)

Consider the evolution of the singularities in the complex-p plane as � is varied [21] for the

causal model given in the last row of Table 2. This model, with both scattering lengths

negative, leaves � � ✓ invariant, and has poles at

p(1,2)
s = �

1

2|as|�

⇣
i ±

p
4� � 1

⌘
. (4.10)

There are three distinct cases, illustrated in Fig. (3).
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In the Wilsonian EFT paradigm, an S-matrix element derived from EFT is dependent on a

momentum cuto↵, ⇤ ⇠ 1/R, which is kept finite and varied to ensure cuto↵-independence

to a given order in the perturbative EFT expansion. What occurs above this scale is strictly

irrelevant to the infrared physics that is encoded by the S-matrix and compared to experiment.

An explicit calculation of the Wigner bound in the EFT of contact operators with cuto↵

regularization can be found in Ref. [9]. As the bound depends explicitly on the EFT cuto↵,

its relevance in physical scenarios is somewhat ambigous as the EFT can violate causality

bounds as long as the violations occur above the cuto↵ of the EFT, and the bound itself

weakens as higher-order corrections in the EFT expansion are included [20].

� 7! ✓ 7! ⇢ 7! r0 r1

� ✓ ⇢ �2a1� (a1>0) �2a0� (a0>0)

� �✓ P�⇢ + P+⇢̄ +2a1� (a1<0) �2a0� (a0>0)

�� ✓ P+⇢ + P�⇢̄ �2a1� (a1>0) +2a0� (a0<0)

�� �✓ ⇢̄ +2a1� (a1<0) +2a0� (a0<0)

✓ � ⇢̄ �2a0� (a0>0) �2a1� (a1>0)

�✓ �� ⇢ +2a0� (a0<0) +2a1� (a1<0)

Table 2. Causal models with S-matrix symmetries which follow from the inversion symmetry.

S-matrix models with momentum-inversion symmetry can originate from zero-range or

of finite-range forces. Here it will be assumed that the underlying theory has strictly zero-

range forces. This then implies strong causality bounds whose geometric interpretation can

be studied. Hence, causality requires rs  0 or, equivalently, that the tangent vectors of the

flat-torus trajectories satisfy

�̇(p) �
sin �(p)

p
, ✓̇(p) �

sin ✓(p)

p
(4.7)

where dot represents di↵erentiation with respect to momenta. The allowed tangent vectors

clearly depend on the quadrant of the flat torus in which they lie. In addition, by enforcing

continuity of the tangent vectors at the boundary of each quadrant, it is found that an S-

matrix trajectory can only exit a quadrant through the upper or right edge. These various

geometric constraints are illustrated in Fig. (2) using the examples of Fig. (1). It is notable

that the large momentum behavior of any S-matrix curve which ends at the trivial fixed point

must be in the top-right quadrant, which is also the only place where a trajectory can have

loops. Since the Wigner bound segregates by quadrant and indicates a direction of preferred

S-matrix evolution, causality breaks the isotropy and discrete homogeneity possessed by a

generic flat torus5. Applying the Wigner bound to the symmetric S-matrix models in Table 1

restricts the allowed signs of the scattering lengths as shown in Table 2.

5The isometry group of a flat torus with two orthonormal lattice vectors is ???
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Figure 2. An illustration of the minimum phase shift for scattering o↵ a potential of range R. The
red (blue) curve represents the phase of the incoming (outgoing) s-wave spherical wave.

larger momentum, p̄ with �(p̄) � �Rp̄. The di↵erence between �(p̄) and �(p) provides a

semi-classical bound on the derivative of the phase shift with respect to momentum

d�

dp
� �R . (4.3)

By time evolving the plane waves, the above becomes a bound on the time delay between

the incident and scattered wave, �t � �MR/p. It is in this sense that causality constrains

non-relativistic scattering. A more careful derivation, which includes quantum mechanical

e↵ects, induces a second term on the right hand side of Eq. (4.3) and leads to the bound [10]:

d�

dp
� �R +

sin (2� + 2pR)

2p
. (4.4)

Evaluated at threshold this becomes a constraint on the e↵ective range parameter:

r  2


R �

R
2

a
+

R
3

3a2

�
. (4.5)

In the Wilsonian EFT paradigm, an S-matrix element derived from EFT is dependent on

a momentum cuto↵, ⇤ ⇠ 1/R, which is kept finite and varied to ensure cuto↵-independence to

a given order in the perturbative EFT expansion. What occurs above this scale is irrelevant to

the infrared physics that is encoded by the S-matrix and compared to experiment. An explicit

calculation of the Wigner bound in the EFT of contact operators with cuto↵ regularization

can be found in Ref. [11]. As the bound depends explicitly on the EFT cuto↵, its relevance in

physical scenarios is somewhat ambiguous as the EFT can violate causality bounds as long as

the violations occur above the cuto↵, and the bound itself weakens as higher-order corrections

in the EFT expansion are included [24].
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Inelasticity and holography 

Figure 13. The entangling potential on the flat torus for finite values of the scattering lengths in
the conformal range model. The potential vanishes or is constant at the blue dot fixed points and is
infinite at the red dot fixed points.

varying the light-quark masses in QCD to adjust the threshold for pion production. In the

chiral limit, at scattering threshold there will be pion radiation which, for present purposes,

is not measured and is removed from the system as a loss of unitarity. In the S-matrix

formalism, the inclusion of some generic inelastic scattering process is achieved by replacing

the single-channel S-matrices by ⌘0 exp 2i�0 and ⌘1 exp 2i�1, with the inelasticity parameters

satisfying 0 < ⌘0,1 < 1. Assuming here that ⌘0 = ⌘1 = r, inelasticity can be realized in the R4

embedding coordinates of Eq. (2.15) through variation of r. The S-matrix with inelasticities

present, ŜI , then satisfies the formal relation

Ŝ†
I ŜI = Ŝ†Ŝ �

X

�

|�ih�| , (5.1)

where Ŝ is the unitary S-matrix of the total system (nucleon-nucleon and inelastic channels),

and � represents an inelastic contribution. It then follows that
�
1 � r

2
�

1̂ =
X

�

|�ih�| . (5.2)

It is clear that r depends non-trivially on momentum and involves a summation over all

kinematically-allowed final states.
X

�

|�ih�| = |NN⇡ihNN⇡| + . . . + |NN⇡ . . . ⇡ihNN⇡ . . . ⇡| + . . . . (5.3)

The momentum flow equation with inelasticities present is

p
d

dp
ŜI = r

✓
p

d

dp
Ŝ +

✓
p

d

dp
ln r

◆
Ŝ

◆
. (5.4)
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Figure 13. The entangling potential on the flat torus for finite values of the scattering lengths in
the conformal range model. The potential vanishes or is constant at the blue dot fixed points and is
infinite at the red dot fixed points.

varying the light-quark masses in QCD to adjust the threshold for pion production. In the

chiral limit, at scattering threshold there will be pion radiation which, for present purposes,

is not measured and is removed from the system as a loss of unitarity. In the S-matrix

formalism, the inclusion of some generic inelastic scattering process is achieved by replacing

the single-channel S-matrices by ⌘0 exp 2i�0 and ⌘1 exp 2i�1, with the inelasticity parameters

satisfying 0 < ⌘0,1 < 1. Assuming here that ⌘0 = ⌘1 = r, inelasticity can be realized in the R4

embedding coordinates of Eq. (2.15) through variation of r. The S-matrix with inelasticities

present, ŜI , then satisfies the formal relation

Ŝ†
I ŜI = Ŝ†Ŝ �

X

�

|�ih�| , (5.1)

where Ŝ is the unitary S-matrix of the total system (nucleon-nucleon and inelastic channels),

and � represents an inelastic contribution. It then follows that
�
1 � r

2
�

1̂ =
X

�

|�ih�| . (5.2)

It is clear that r depends non-trivially on momentum and involves a summation over all

kinematically-allowed final states.
X

�

|�ih�| = |NN⇡ihNN⇡| + . . . + |NN⇡ . . . ⇡ihNN⇡ . . . ⇡| + . . . . (5.3)

The momentum flow equation with inelasticities present is
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Ŝ

◆
. (5.4)

– 27 –

?*#"/%%*#"$-.%/'0$("%*''"

+

<latexit sha1_base64="4nkLBftvsxIwbgzVdyKHv5ulcMk=">AAAAAHicbVBNS8NAEJ34WetX1aOXxSIIQkmkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS47JfKrsVdw6ySryclCFHvV/66g1ilkYoDRNU667nJsbPqDKcCZwWe6nGhLIxHWLXUkkj1H42P3RKzq0yIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynaELzll1dJ66riVStuo1qu3eZxFOAUzuACPLiGGtxDHZrAAOEZXuHNeXRenHfnY9G65uQzJ/AHzucPcoOMsg==</latexit>

+

<latexit sha1_base64="4nkLBftvsxIwbgzVdyKHv5ulcMk=">AAAAAHicbVBNS8NAEJ34WetX1aOXxSIIQkmkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS47JfKrsVdw6ySryclCFHvV/66g1ilkYoDRNU667nJsbPqDKcCZwWe6nGhLIxHWLXUkkj1H42P3RKzq0yIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynaELzll1dJ66riVStuo1qu3eZxFOAUzuACPLiGGtxDHZrAAOEZXuHNeXRenHfnY9G65uQzJ/AHzucPcoOMsg==</latexit>

+ . . .

<latexit sha1_base64="emFKT73wd3GDZuVNJGgdLUeUXs4=">AAAAAHicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiBT0WvXisYD+gDWWz2bRLN5u4OxFK6Z/w4kERr/4db/4bt20O2vpg4PHeDDPzglQKg6777RTW1jc2t4rbpZ3dvf2D8uFRyySZZrzJEpnoTkANl0LxJgqUvJNqTuNA8nYwup357SeujUjUA45T7sd0oEQkGEUrdS5IT4YJmn654lbdOcgq8XJSgRyNfvmrFyYsi7lCJqkxXc9N0Z9QjYJJPi31MsNTykZ0wLuWKhpz40/m907JmVVCEiXalkIyV39PTGhszDgObGdMcWiWvZn4n9fNMLr2J0KlGXLFFouiTBJMyOx5EgrNGcqxJZRpYW8lbEg1ZWgjKtkQvOWXV0nrsurVqu59rVK/yeMowgmcwjl4cAV1uIMGNIGBhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx96o4+a</latexit>

U'')I=0$*-M"8*01"(1/--.%'"(*)=%."0*"'$-7%."'*)+(.

=)

<latexit sha1_base64="C+Aj2pFn8wNB10qF4i32rtNEU18=">AAAAAHicbVA9SwNBEJ2LXzF+5NTSZjEIVuFOAloGbSwsIpgPSI6wt9m7LNnbPXb3lBjyS2wsFLH1p9j5b9wkV2jig4HHezPMzAtTzrTxvG+nsLa+sblV3C7t7O7tl92Dw5aWmSK0SSSXqhNiTTkTtGmY4bSTKoqTkNN2OLqe+e0HqjST4t6MUxokOBYsYgQbK/Xdcu9WilixeGiwUvKx71a8qjcHWiV+TiqQo9F3v3oDSbKECkM41rrre6kJJlgZRjidlnqZpikmIxzTrqUCJ1QHk/nhU3RqlQGKpLIlDJqrvycmONF6nIS2M8FmqJe9mfif181MdBlMmEgzQwVZLIoyjoxEsxTQgClKDB9bgoli9lZEhlhhYmxWJRuCv/zyKmmdV/1a1burVepXeRxFOIYTOAMfLqAON9CAJhDI4Ble4c15cl6cd+dj0Vpw8pkj+APn8wdBFpN5</latexit>

SU(4)W

<latexit sha1_base64="qsWIHeivUmkk/QJNGyOMuixeqGk=">AAAAAHicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeiF48VTVNoQ9lsN+3SzWbZ3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5keRMG9f9dtbWNza3tks75d29/YPDytFxW6eZItQnKU9VJ8Kaciaob5jhtCMVxUnEaRCNb2d+8ESVZql4NBNJwwQPBYsZwcZKwYNfa1z0g36l6tbdOdAq8QpShQKtfuWrN0hJllBhCMdadz1XmjDHyjDC6bTcyzSVmIzxkHYtFTihOszn507RuVUGKE6VLWHQXP09keNE60kS2c4Em5Fe9mbif143M/F1mDMhM0MFWSyKM45Mima/owFTlBg+sQQTxeytiIywwsTYhMo2BG/55VXSvqx7jbp736g2b4o4SnAKZ1ADD66gCXfQAh8IjOEZXuHNkc6L8+58LFrXnGLmBP7A+fwB8I6Opg==</latexit>



In addition to the four RG fixed points on the boundary, there is now an additional fixed

point at r = 0. This fixed point has vanishing spin entanglement as the entanglement power

with inelasticities is

E(ŜI) = NP r
4 sin2 (� � ✓) . (5.5)

5.2 Embedding in R4

With the three coordinates X
1 = r, X

2 = �, and X
3 = ✓ embedded in R4, the metric of the

bulk space takes the form

ds
2 = dr

2 + 1

2
r
2
�
d�

2 + d✓
2
�

, (5.6)

with flat-torus boundary at r = 1. The hyperbolic space described by this metric has scalar

curvature

R = �
2

r2
. (5.7)

There is therefore a singularity11 at the point r = 0 where there is total loss of unitarity. The

Einstein tensor has one non-vanishing component given by

G11 =
1

r2
. (5.8)

Therefore the bulk metric solves the Einstein equation12

Gij =
1

r2
�
1

i �
1

j . (5.9)

It is worth emphasizing that this singular hyperbolic geometry results as a consequence of

the assumption that the inelasticity in the two channels of scattering are correlated. If ⌘0

and ⌘1 are taken to be independent, then the resulting embedding is a flat Euclidean space,

that is, a parametric representation of R4.

5.3 Geodesics in the bulk

An interesting question is whether the S-matrix trajectories on the boundary can be recovered

in the bulk space. Trajectories on the flat-torus are unitary, by construction, and are in

correspondence with local interactions in the EFT. Inelastic e↵ects are in correspondence

with non-local interactions in the EFT. Consider first geodesics.

In the absence of entangling forces and ina�nity, the geodesic equations in the a�ne

parameter � are:

r̈ = 1

2
r[(�̇)2 + (✓̇)2] , �̈ = � 2�̇

ṙ
r , ✓̈ = � 2✓̇

ṙ
r . (5.10)

11The Kretschmann scalar is given by K = RijklRijkl = R2 = 4/r4.
12This solution is reminiscent of Vaidya metrics in spacetime, which are generalizations of the Schwarzschild

metric with time-dependent mass function and describe null dust forming a black hole.
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While the HS distance provides a metric on the space of S-matrices, it is convenient to use

view the view the two-dimensional space on which the S-matrix propagates as a geometric

embedding in a higher-dimensional space. Recall that in the chosen isotropic coordinates, the

first unitarity constraint determines a three-sphere of fixed radius r = 1:

x
2 + y

2 + z
2 + w

2 = r
2

. (3.10)

The isometry group of the three-sphere, S
3, is SO(4) which is also the isometry group of R4.

The six SO(4) generators can be constructed by considering the rotations in the six planes

that can be formed from the four cartesian coordinates. The second unitarity constraint,

Eq. (2.10), can be expressed in the two equivalent forms

(x ± z)2 + (y ± w)2 = r
2

. (3.11)

This leaves invariant two independent SO(2) transformations. In addition, there are six

discrete Z2 symmetries. Therefore, the isometry group of the two-dimensional space is

SO(2) ⌦ SO(2) ⌦ Z6

2 . (3.12)

As an embedding in R4, with metric given by

ds
2 = dx

2 + dy
2 + dz

2 + dw
2

, (3.13)

one finds the flat two-dimensional Euclidean metric

ds
2 = 1

2

�
d�

2 + d✓
2
�

. (3.14)

This metric describes the flat torus T2
⇠ S

1
⌦ S

1
2 R4, where S

1 is the circle with isometry

group SO(2).

3.4 Flat torus isometry group

Here the action of the isometry group on the variables � and ✓ will be given explicitly. As

SO(4) ⇠ SU(2) ⌦ SU(2), the generators of SO(4) may be given by the generators of the two

SU(2)’s, say Xi and Yj with i, j = 1, 2, 3. The two SO(2) isometries of the flat torus are then

X3 and Y1, where X3 is a simultaneous rotation in the x � y and z � w plane by the same

amount, while Y1 is a simultaneous rotation in the x�w and y�z plane by opposite amounts.

The action of X3 and Y1 on the angles � and ✓ are given in Table 1. Note that these are

X3 � 7! � + ✏ ✓ 7! ✓ + ✏

Y1 � 7! � + ✏ ✓ 7! ✓ � ✏

Table 1. Continuous isometries of the flat torus.

these are simply the translational symmetries that one would expect on a flat manifold. The

action of the six Z2 symmetries on the angles � and ✓ are given in Table 2. It is clear that

the conformal UV/IR symmetries of the LO in the ERE and in the conformal range model

are contained in the flat-torus isometries. This will be important in what follows.
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Figure 16. In-a�nely parameterized bulk geodesic between S-matrix fixed points. The dashed (solid)
black line corresponds to �MAX = 4 (8). The red curve corresponds to �MAX = 50.

5.4 Recovery of the ERE and error correction

In the presence of an external potential, V̂, with the parameter choice � = p, the geodesic

equations are

r̈ = ̂(p)ṙ + 1

2
r[(�̇)2 + (✓̇)2] �

1

2
N̂

2
@rV̂ ,

�̈ = ̂(p)�̇ � 2�̇
ṙ

r
� N̂

2
1

r2
@�V̂ ,

✓̈ = ̂(p)✓̇ � 2✓̇
ṙ

r
� N̂

2
1

r2
@✓V̂ . (5.17)

Choosing the ina�nity as in Eq. (5.14), one finds N̂ = r
2
N . The LO ERE solution of

Eq. (4.10) for � and ✓ is then recovered with external potential (with the choice c1 = 1)

V̂(r, �, ✓) =
1

r2
V(�, ✓) =

|a0a1|

(|a0| + |a1|)
2

1

r2
tan2

�
1

2
(� + ✏ ✓)

�
. (5.18)

The bulk entangling potential is therefore proportional to the scalar curvature of the hyper-

bolic space. The di↵erential equation for r(p) is

r̈ =

✓
(p) + 2

ṙ

r

◆
ṙ + 1

2
r
⇥
(�̇)2 + (✓̇)2 + 2N

2V
⇤

. (5.19)

The solution is given by

r(p) = cos
�
A

1

2
(�max � ✏ ✓max)

�
sec

�
A

⇥
(�(p) � ✏ ✓(p)) �

1

2
(�max � ✏ ✓max)

⇤�
, (5.20)

where �max = �(pmax), ✓max = ✓(pmax), and

A ⌘

p
a2

0
+ a2

1
p

2(a0 � ✏a1)
. (5.21)

Note that r(0) = r(pmax) = 1. Unlike the geodesic case, there is now a maximum value of

pmax beyond which the singularity is reached. This occurs when

A (�max � ✏ ✓max) = ⇡ . (5.22)
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ṙ

r
� N̂

2
1

r2
@✓V̂ . (5.17)

Choosing the ina�nity as in Eq. (5.14), one finds N̂ = r
2
N . The LO ERE solution of

Eq. (4.10) for � and ✓ is then recovered with external potential (with the choice c1 = 1)

V̂(r, �, ✓) =
1

r2
V(�, ✓) =

|a0a1|

(|a0| + |a1|)
2

1

r2
tan2

�
1

2
(� + ✏ ✓)

�
. (5.18)

The bulk entangling potential is therefore proportional to the scalar curvature of the hyper-

bolic space. The di↵erential equation for r(p) is

r̈ =

✓
(p) + 2

ṙ

r

◆
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– 31 –

J.'>"8)0"#$01"/-"$-0+$-'$(".++*+

In the physical case this gives the bound pmax < 89.4 MeV. Therefore, there is an intrinsic

error in reproducing the physical S-matrix —that is �(p) and ✓(p)— from bulk data as the

fixed point values of ±⇡ can never be reached. Indeed, one finds at pmax:

� = ⇡ +
2

a0pmax

+ O
�
(a0pmax)

�3
�

= 0.94 ⇡ ,

✓ = �⇡ +
2

a1pmax

+ O
�
(a1pmax)

�3
�

= �0.75 ⇡ . (5.23)

The closer the scattering length is to unitarity, the smaller the error. Conversely, natural

values of the scattering lengths incur significant errors. Of course, for the solution of the

geodesic equation that is in question, � and ✓ maintain the conformal symmetry of the

boundary solution, and therefore as long as the bulk data can reproduce the trajectory up

to the fixed point of the conformal transformation, p = 1/
p

|a0a1| = 17.4 MeV, the final

segment of the curve can be obtained from the reflection isometry implied by the conformal

invariance.

00
0

1

0.5

⇡
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⇡

2

p (MeV)p (MeV)

r
(p

)
pmaxpmax

�(p)

�✓(p)

Figure 17. Bulk geodesics between S-matrix fixed points for LO in the ERE. The dashed (solid)
black line corresponds to pmax = 50 MeV (79 MeV). The red curve corresponds to pmax = 89 MeV.

Missing here still is an understanding of the relationship between entanglement power in dual

descriptions? Weird that EP decreases as r
4 and potential scales as r

�2. We can integrate

the entanglement power over the boundary trajectory. How do we then get that in the bulk

theory? etc. In the Ads/cft description, entanglement is generating the bulk (i.e. extra

dimension). In our picture, the inelasticity is the extra dimension.

6 Projections on R2 and R3

6.1 Non-conservative entanglement forces

The embedding of the unitarity surface in R4 gave rise, in the chosen coordinate system,

to the flat torus, which allowed for a straightforward solution of the trajectory equations.

However, the intrinsic four-dimensional nature of the space renders visualization di�cult.

In the original considerations of geometry, it was seen, for instance, that a projection onto
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Choosing the ina�nity as in Eq. (5.14), one finds N̂ = r
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N . The LO ERE solution of

Eq. (4.10) for � and ✓ is then recovered with external potential (with the choice c1 = 1)
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The bulk entangling potential is therefore proportional to the scalar curvature of the hyper-

bolic space. The di↵erential equation for r(p) is
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The solution is given by

r(p) = cos
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where �max = �(pmax), ✓max = ✓(pmax), and

A ⌘

p
a2

0
+ a2

1
p

2(a0 � ✏a1)
. (5.21)

Note that r(0) = r(pmax) = 1. Unlike the geodesic case, there is now a maximum value of

pmax beyond which the singularity is reached. This occurs when

A (�max � ✏ ✓max) = ⇡ . (5.22)
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Figure 2. The entanglement power obtained from Eq. (2.13) using the Nijmegen phase shift analysis
in Ref. [9] (dot-dashed red curve), from Eq. (2.41) using the scatterings length only (red curve), and
from the measure of curvature given by Eq. (2.42) (black curve).

Eq. (2.13) makes clear that the entanglement power is related to the distance of the u and v

coordinates from the origin. However, given that the entanglement power has support only

away from the fixed points, one might expect that when the momentum dependence of the

S-matrix is specified, the entanglement power will be directly related to �u,v(p).

2.4 Geometry of the S-matrix

2.4.1 Fixed points

The fixed points in (x, y, z, w) coordinates:

Ŝ 1 = +1̂ =) (+1, 0, 0, 0) ,

Ŝ 2 = �1̂ =) (�1, 0, 0, 0) ,

Ŝ 3 = +(1̂ + �̂ · �̂)/2 =) ( 0, 0, +1, 0) ,

Ŝ 4 = �(1̂ + �̂ · �̂)/2 =) ( 0, 0, �1, 0) . (2.17)

2.4.2 Quartics and the squere

The constraint of Eq. (2.8) can be removed to give the quartic algebraic curve

y
2
�
x

2 + y
2 + z

2
�

+ x
2
z
2 = y

2
. (2.18)
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Figure 14. Bulk space simplified to a sphere. The unitary S-matrix lives on the flat-torus boundary
and here corresponds to the (solid red) trajectory between the RG fixed points. The bulk (dotted
black) trajectory begins on the boundary and through inelastic loss enters the bulk and avoids the
singularity and comes back out to the boundary but does not quite arrive to the fixed point.

The general solution to these equations is straightforward to find. Consider the S-matrix

trajectory from fixed point Ŝ 1 to fixed point Ŝ 2 with � = ✓. On the flat-torus, this trajectory

moves along a non-entangling geodesic. In the bulk, the corresponding geodesic is

r(�) =
p

1 + (4 + �) � (� � 1) ,

�(�) = ✓(�) = tan�1

 
�
p

� (4 � �)

2 � � (4 � �)

!
, (5.11)

where � 2 [0, 1] and � is a small parameter. The boundary geodesic is recovered in the limit

� ! 0 where the trajectory goes through the singularity and there is a discontinuity at the

half-way point � = 1/2:

r(�) = 2|� �
1

2
| ,

�(�) = ✓(�) = ⇡ ⇥
�
� �

1

2

�
, (5.12)

where ⇥(x) is the Heaviside step function. Avoidance of the singularity requires non-vanishing

� and incurs an error in � of order
p

�.

Consider now parameterizing the same geodesic with the non-a�ne parameter �. The

geodesic equations are now

r̈ = ̂(�)ṙ + 1

2
r[(�̇)2 + (✓̇)2] ,

�̈ = ̂(�)�̇ � 2�̇
ṙ

r
,

✓̈ = ̂(�)✓̇ � 2✓̇
ṙ

r
. (5.13)
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Summary

✦ Minimization of the EP in pion-pion (qutrit-qutrit) and pion 
-nucleon (qubit-qutrit) scattering leads to consequences that 
are indistinguishable from large-N QCD implications. 

✦ In baryon-baryon scattering, minimization of the EP implies 
new symmetries in the strange sector which simplify the 
effective field theory. Lattice QCD simulations agree with 
these predictions. Entanglement constrains scattering.

✦ Fermion-Fermion (qubit-qubit) scattering has a geometric 
formulation in which the S-matrix propagates in a theory 
space generated by entanglement and bounded by unitarity. 
With inelastic loss, it is a simple toy model of holography.


