

2022.7.8

Alpha and alpha cluster in nuclei

赵鹏巍

北京大学物理学院

Outline

- A single alpha: relativistic variational Monte Carlo
- Alpha clustering nuclei: relativistic density functional theory
- Alpha dynamics: time-dependent relativistic density functional theory
- Summary

原子核理论

Overarching goal: *understand nuclear properties from a unified theoretical view rooted in the forces among nucleons.*

Relativistic Effects: More Common Than You Thought

Why gold is yellow?

Relativistic nuclear many-body problem

Schrödinger Equation

 $H|\psi\rangle = (T+V)|\psi\rangle$

Relativistic QFT

$$L = L_N + L_\sigma + L_\omega + L_{\text{int}}$$

Walecka, Ann. Phys., 83, 491 (1974)

Mean-field approximation

- 1. Mean-field approximation works surprisingly good !
- 2. Large mean fields $S \approx -400 \text{ MeV}$, $V \approx 350 \text{ MeV}$

J. D. WALECKA

A Theory of Highly Condensed Matter*

Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305

- 3. Large spin-orbit splitting predicts nuclear shell model, no adjustments to spin-orbit force
- 4. Relativistic Saturation non-relativistic calculations lead to a collapse

A covariant formulation provides an <u>efficient and comprehensive</u> explanation of observed bulk and single-particle systematics.

Outline

- A single alpha: relativistic variational Monte Carlo
- Alpha clustering nuclei: relativistic density functional theory
- Alpha dynamics: time-dependent relativistic density functional theory
- Summary

Three-body force is important

Carlson, et al., Rev. Mod. Phys., 2015, 87, 1067-1118

Relativistic effects are important

Relativistic Brueckner Hartree Fock

Shen, et al., Prog. Part. Nucl. Phys., 2019, 109, 103713

A consistent study of relativistic effects and three-body forces

✓ QFT: To include three-body force in RBHF is very difficult !

✓ Relativistic Hamiltonian dynamics via Poincaré group theory !

Carlson, Pandharipande, and Schiavilla, Phys. Rev. C 47, 484 (1993)

✓ A relativistic Hamiltonian derived from covariant pionless EFT.

Yang, PWZ, arXiv:2206.13208 [nucl-th]

At leading order

$$\begin{aligned} \mathscr{L}_{NN}^{(0)} &= -\frac{1}{2} \left[C_{S}(\overline{\psi}\psi)(\overline{\psi}\psi) + C_{V}(\overline{\psi}\gamma_{\mu}\psi)(\overline{\psi}\gamma^{\mu}\psi) \\ &+ C_{P}(\overline{\psi}\gamma_{5}\psi)(\overline{\psi}\gamma_{5}\psi) + C_{AV}(\overline{\psi}\gamma_{5}\gamma_{\mu}\psi)(\overline{\psi}\gamma_{5}\gamma^{\mu}\psi) + C_{T}(\overline{\psi}\sigma_{\mu\nu}\psi)(\overline{\psi}\sigma^{\mu\nu}\psi) \right] \\ \hat{H}_{LO} &= \sum_{i=1}^{A} \left[(m_{N}^{2} - \nabla_{i}^{2})^{1/2} - m_{N} \right] + \sum_{i < j}^{A} (C_{1} + C_{2}\sigma_{i} \cdot \sigma_{j}) \left(1 + V_{b} + V_{t} \right) e^{-\frac{\Lambda^{2}}{4}r_{ij}^{2}} \right] \\ \hat{H}_{LO} &= -\frac{\hat{P}_{ij}^{2}}{8m_{N}^{2}} - \frac{\Lambda^{2}}{16m_{N}^{2}} (\hat{P}_{ij} \cdot r_{ij})^{2}, \qquad V_{t}(r_{ij}) = -\frac{\Lambda^{2}}{4m_{N}^{2}} \left[\left(3 - \frac{\Lambda^{2}}{2}r_{ij}^{2} \right) + 2ir_{ij} \cdot \hat{p}_{ij} + 4\frac{\hat{P}_{ij}^{2}}{\Lambda^{2}} \right] \end{aligned}$$

Variational Monte Carlo

Compatible with the rotational invariance of the Hamiltonian!

Yang, PWZ, arXiv:2206.13208 [nucl-th]

Ground states of three- and four-body nuclei

Thomas collapse avoided

Renormalizability fulfilled

Three-body force needed ?

Four-body force at NLO?

Yang, PWZ, arXiv:2206.13208 [nucl-th]

The interplay between relativistic effects and three-body force

$$\hat{P}_{12} = \hat{p}_1 + \hat{p}_2 = -\hat{p}_3$$

$$V_{\rm b}(\boldsymbol{r}_{12}) = -\frac{\hat{\boldsymbol{P}}_{12}^2}{8m_N^2} - \frac{\Lambda^2}{16m_N^2}(\hat{\boldsymbol{P}}_{12}\cdot\boldsymbol{r}_{12})^2,$$

$$V_{\rm b}(\boldsymbol{r}_{12}) = -\frac{\hat{\boldsymbol{p}}_3^2}{8m_N^2} - \frac{\Lambda^2}{16m_N^2}(\hat{\boldsymbol{p}}_3 \cdot \boldsymbol{r}_{12})^2,$$

$$V_{\rm t}(\boldsymbol{r}_{ij}) = -\frac{\Lambda^2}{4m_N^2} \left[\left(3 - \frac{\Lambda^2}{2} \boldsymbol{r}_{ij}^2 \right) + 2\mathrm{i}\boldsymbol{r}_{ij} \cdot \hat{\boldsymbol{p}}_{ij} + 4\frac{\hat{\boldsymbol{p}}_{ij}^2}{\Lambda^2} \right]$$

Repulsive at short-range

Yang, PWZ, arXiv:2206.13208 [nucl-th]

Outline

- A single alpha: relativistic variational Monte Carlo
- Alpha clustering nuclei: relativistic density functional theory
- Alpha dynamics: time-dependent relativistic density functional theory
- Summary

Rod-shaped nuclei

Strongly deformed states towards a hyper-deformation may exist in light N = Z nuclei due to a cluster structure.

Density functional theory

The many-body problem is mapped onto an one-body problem

Hohenberg-Kohn Theorem The exact ground-state energy of a quantum mechanical many-body system is a universal functional of the local density.

$$E[\rho] = T[\rho] + U[\rho] + \int V(\mathbf{r})\rho(\mathbf{r}) \,\mathrm{d}^3\mathbf{r}$$

Kohn-Sham DFT

$$E[\rho] \Rightarrow \hat{h} = \frac{\delta E}{\delta \rho} \Rightarrow \hat{h}\varphi_i = \varepsilon_i \varphi_i \Rightarrow \rho = \sum_{i=1}^A |\varphi_i|^2$$

The practical usefulness of the Kohn-Sham theory depends entirely on whether an Accurate Energy Density Functional can be found!

Machine-learning DFT for nuclei

✓ H-K Theorem proves the existence of a universal functional depends solely on density!

- ✓ BUT, all previous attempts for a nuclear kinetic energy functional are NOT so accurate.
 - One has to introduce Kohn-Sham, i.e., a functional of orbits ...

✓ By Machine Learning, a robust and accurate orbital-free density functional is established.

Wu, Ren, PWZ, Phys. Rev. C, 105, L031303 (2022)

A functional depends solely on density

	Ronn-Shann	Machine-Learning	Experiment
$E_{\rm tot}$	-26.3700	-26.3931 (0.0012)	-28.2957
$E_{\rm kin}$	35.2138	$35.2044 \ (0.0056)$	/
$\langle r^2 angle$	2.1626	$2.1628 \ (0.0002)$	1.6755
$E_{\rm tot}$	-127.3781	-127.1622(0.1584)	-127.6193
$E_{\rm kin}$	219.2875	$218.3458\ (0.6882)$	/
$\langle r^2 angle$	2.8077	2.8113(0.0047)	2.6991
$E_{\rm tot}$	-342.0645	-341.8027(0.5724)	-342.0521
$E_{\rm kin}$	643.1100	$642.9145\ (1.6875)$	/
$\langle r^2 \rangle$	3.4677	$3.4652 \ (0.0055)$	3.4776
	$\frac{E_{\text{kin}}}{E_{\text{kin}}}$ $\frac{\langle r^2 \rangle}{E_{\text{tot}}}$ $\frac{\langle r^2 \rangle}{E_{\text{tot}}}$ $\frac{\langle r^2 \rangle}{E_{\text{kin}}}$ $\frac{\langle r^2 \rangle}{\langle r^2 \rangle}$	$\begin{array}{c cccc} \hline & -20.3700 \\ \hline & E_{kin} & 35.2138 \\ \hline & r^2 \rangle & 2.1626 \\ \hline & E_{tot} & -127.3781 \\ \hline & E_{kin} & 219.2875 \\ \hline & r^2 \rangle & 2.8077 \\ \hline & E_{tot} & -342.0645 \\ \hline & E_{kin} & 643.1100 \\ \hline & r^2 \rangle & 3.4677 \\ \hline \end{array}$	$\begin{array}{c ccccc} -20.3700 & -20.3931 & (0.0012) \\ \hline E_{\rm kin} & 35.2138 & 35.2044 & (0.0056) \\ \hline (r^2) & 2.1626 & 2.1628 & (0.0002) \\ \hline E_{\rm tot} & -127.3781 & -127.1622 & (0.1584) \\ \hline E_{\rm kin} & 219.2875 & 218.3458 & (0.6882) \\ \hline (r^2) & 2.8077 & 2.8113 & (0.0047) \\ \hline E_{\rm tot} & -342.0645 & -341.8027 & (0.5724) \\ \hline E_{\rm kin} & 643.1100 & 642.9145 & (1.6875) \\ \hline (r^2) & 3.4677 & 3.4652 & (0.0055) \\ \hline \end{array}$

Most accurate ever orbit-free DFT for nuclei

Robust self-consistent solution

Toward a bridge between relativistic and nonrelativistic DFTs

Ren and PWZ, Phys. Rev. C, 102, 021301(R) (2020) Editors' Suggestion

Covariant density functional: PC-PK1

~10 parameters fitted to 60 spherical nuclei ...

rms-deviation 2.96 MeV 1.14 PC-PK1 DD-PC1 ТМА DD-MEδ DD-ME2 NL3*

> Agbemava PRC 2014 Geng PTP 2005

Best density-functional description for nuclear masses so far!

How many nuclei are bound?

<u>http://nuclearmap.jcnp.org/index.html</u> 三轴+超越平均场关联

Yang, Wang, PWZ, Li, Phys. Rev. C 104, 054312 (2021)

Lattice CDFT

- \checkmark No spatial symmetry restriction
- ✓ Appropriate for nuclei with a large space distribution
- $\checkmark\,$ Less computational cost than basis expansion method
- ✓ A long-term challenge due to
 - a) variational collapse problem
 - b) fermion doubling problem

Variational method is used to solve CDFT in 3D lattice efficiently !

Rod shape against bending and fission

Static calculations with axial symmetry

12**C**

16

Liu and PWZ, Chin. Phys. C 36, 818 (2012)

Spin and Isospin Coherent Effects

Static calculations with reflection-symmetry

Proton density distribution

neutron orbitals

Rod shapes could be realized towards extreme spin and isospin!

Rod shape against bending and fission

Static calculations in 3D lattice

23/39

Rod shapes are generated as energy minima at a certain range of rotational frequencies.

Ren, Zhang, PWZ, Itagaki, Maruhn, Meng, Sci. China-Phys. Mech. Astron., 62, 112062 (2019)

Outline

- A single alpha: relativistic variational Monte Carlo
- Alpha clustering nuclei: relativistic density functional theory
- Alpha dynamics: time-dependent relativistic density functional theory
- Summary

Time-dependent CDFT in 3D lattice

The many-body problem is mapped onto a one-body problem

Runge-Gross Theorem

There is a unique mapping between the time dependent external potential and the density, for many body systems evolving from a given initial state.

Runge and Gross, PRL 52, 997 (1984)

Ren, PWZ, Meng, PLB 801,135194 (2020)

$$i\partial_t \begin{pmatrix} f \\ g \end{pmatrix} = \begin{pmatrix} m + \mathbf{V} + \mathbf{S} & \boldsymbol{\sigma} \cdot \boldsymbol{p} - \boldsymbol{\sigma} \cdot \mathbf{V} \\ \boldsymbol{\sigma} \cdot \boldsymbol{p} - \boldsymbol{\sigma} \cdot \mathbf{V} & -m + \mathbf{V} - \mathbf{S} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix}$$

$$\rho(\mathbf{r},t) = \sum_{i}^{N} f_i^2 + g_i^2$$

Resonant scattering of ⁴He + ⁸Be

The linear-chain states are generated, and then evolve to a triangular configuration, and finally to a more compact shape.

⁴He +¹⁰Be

Ren, PWZ, Meng, PLB 801, 135194 (2020)

✓ The metastable linear chains can be formed in ⁴He+⁸Be and ⁴He+¹⁰Be collisions.

 \checkmark During the time evolution of the linear-chain configuration, moving clusters can be found.

Octupole deformation

The oscillation of the two valence neutrons in the longitudinal direction induces the strong oscillation of the octupole deformation.

Dynamical isospin effects

Ren, PWZ, Meng, PLB 801, 135194 (2020)

Dynamical isospin effects: slowing down the longitudinal oscillations by the two valence neutrons.

Ren, Vretenar, Nikšić, PWZ, Zhao, Meng, PRL 128, 172501 (2022)

费米子局域化函数

$$D_{q\sigma}(\boldsymbol{r}) = \left[\sum_{lpha \in q} |\boldsymbol{\nabla} \phi_{lpha}(\boldsymbol{r}, \sigma)|^2 - rac{\left|\sum_{lpha \in q} \phi_{lpha}^*(\boldsymbol{r}, \sigma) \boldsymbol{\nabla} \phi_{lpha}(\boldsymbol{r}, \sigma)
ight|^2}{
ho_{q\sigma}(\boldsymbol{r})}
ight]$$

 $\mathcal{C}_{q\sigma}(\boldsymbol{r}) = \left[1 + \left(\frac{D_{q\sigma}(\boldsymbol{r})}{\tau_{q\sigma}^{\mathrm{TF}}(\boldsymbol{r})}\right)^{2}\right]^{-1}$

C = 1/2; Thomas-Fermi Gas C = 1; Highly Localized

Reinhard, et al., Phys. Rev. C 83, 034312 (2011)

the probability of finding two like-particles in the vicinity of each other - Localization!

Becke and Edgecombe, J. Chem. Phys., 92, 5397 (1990)

Jerabek et al., Phys. Rev. Lett. 120, 053001 (2018)

Toroidal states in ²⁸Si

molecular α-chain nuclei

Zhang, Ren, PWZ, Vretenar, Nikšić, Meng, PRC, 105, 024322 (2022)

32/35

Cao et al., Phys. Rev. C, **99**, 014606 (2019) Ren, PWZ, Zhang, Meng, Nucl. Phys. A, **996**, 121696, (2020)

三分裂、四分裂?

33/35

Ren, Vretenar, Nikšić, PWZ, Zhao, Meng, PRL 128, 172501 (2022)

Take away message

Alpha and alpha cluster in nuclei have been investigated by developing the relativistic variational Monte Carlo method and the relativistic density functional theory.

A single alpha

✓ Relativistic VMC with artificial neural network

relativistic effects avoid the energy collapse

a strong interplay between the relativistic effects and three-body force

Anomalously rod-shaped nuclei

- Static calculations with reflection symmetry imposed
 coherent effects between spin and isospin could stabilize the rod shape
- Static calculations <u>without any symmetry imposed</u>
 rod shapes as <u>energy minima at a certain range of rotational frequencies</u>
- ✓ Dynamic calculations with the time dependent CDFT
 dynamical isospin effects slowing down the longitudinal oscillations

Fission dynamics

- \checkmark Timescale of neck formation coincides with the assembly of two α -like clusters
- \checkmark The neck ruptures at a point exactly between the two α -like clusters
- ✓ Opens exciting possibilities for a microscopic study of ternary fission

Collaborations

Beijing

Jie Meng Zhengxue Ren Xinhui Wu Shuangquan Zhang **Chongqing** Zhipan Li

Zagreb Tamara Nikšić Dario Vretenar Kyoto Naoyuki Itagaki

Munich Peter Ring

Wuxi

Lang liu

Thank you for your attention!