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Universality

Consider particles interacting through 2-body potential with range R.
Classically, the particles ‘feel‘ each other only within the potential range.
But, in the case of resonant interaction, the wave function has much
larger extent.
At low energies, the 2-body physics is govern by the scattering length, a.

lim
k→0

k cot δ(k) = −1
a
+

1
2

r0k2

When |a| ≫ R the potential details has no influence: Universality.
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Universality

Naturally, a ≈ r0 ≈ R.
Universal systems are fine-tuned to get a ≫ r0, R.
Corrections to universal theory are of order of r0/a and R/a.

For a > 0, we have universal dimer with energy E = −h̄2/ma2.

Nucleus: as ≈ −23.4 fm, at ≈ 5.42 fm, R = h̄/mπc ≈ 1.4 fm.
Deuteron binding energy, 2.22 MeV, is close to h̄2/mat

2 ≈ 1.4 MeV.

4He atoms: a ≈ 95 Å≫ rvdW ≈ 5.4 Å.
Ultracold atoms near a Feshbach resonance,

a(B) = abg

(
1 +

∆
B − B0

)
S. Inouye et al., Nature 392, 151 (1998)
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Ultracold atoms near a Feshbach resonance,

a(B) = abg

(
1 +

∆
B − B0

)
S. Inouye et al., Nature 392, 151 (1998)

Betzalel Bazak (HUJI) /πEFT for Nuclei and Hypernuclei 3 / 32



Effective Field Theory (EFT)

Typically in physics we have an “underlying” theory, valid at a mass
scale Mhi, but we want to study processes at momenta Q ≈ Mlo ≪ Mhi.
For example, nuclear structure involves energies that are much smaller
than the typical QCD mass scale, MQCD ≈ 1 GeV.
Effective Field Theory (EFT) is a framework to construct the interactions
systematically. The high-energy degrees of freedom are integrated out,
while the effective Lagrangian has the same symmetries as the
underlying theory.
The details of the underlying dynamics are contained in the interaction
strengths.
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Pionless or Short-Range EFT

For spinless bosons, the two body-sector has a single term at LO,

VLO = a1.

and another one at NLO,

VNLO = b1(p2 + p′2).

The LO term is iterated; the NLO term is treated as perturbation.

Equivalent to the effective range expansion.
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Regularization

In coordinate space, we have at LO a contact interaction,

V(rij) = C̃(0)δ(rij).

This interaction needs regularization and renormalization.
The bound state of two identical bosons (h̄ = c = 1),

− 1
m
∇2ψ(r) + C̃(0)δ(r)ψ(r) = −B2ψ(r)

and in momentum space,

p2

m
ϕ(p) + C̃(0)

∫ d3p′

(2π)3 ϕ(p′) = −B2ϕ(p)

Therefore,
1

C̃(0)
=

∫ d3p′

(2π)3
1

p′2/m + B2

which diverges!
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Renormalization

To regularize, we can smear the interaction over a range of 1/Λ,

δΛ(r) ≡
Λ3

8π3/2 exp[−(Λr/2)2], δΛ(r)
Λ→∞−→ δ(r).

Doing so for the incoming and outcoming momenta we have,

1
C̃(0)(Λ)

=
∫ d3p′

(2π)3
exp(−2p′2/Λ2)

p′2/m + B2

Which can be expand by powers of Q2/Λ, (Q2 =
√

mB2)

C̃(0)(Λ) =
4
√

2π3/2

mΛ

(
1 +

√
2π

Q2

Λ
+ ...

)
.

...therfore our Low Energy Constant (LEC) C̃(0) = C̃(0)(Λ) is now
renormalized by some experimental data, here B2.
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Three-boson system

Trying to calculate the trimer binding energy we get the Thomas collapse:

B3 ∝
h̄2Λ2

m

50 100 150 200 250 300 350

0

2000

4000

6000

L�Q2

B
3

�B
2

To stabilize the system, a
3-body counter term must be
introduced at LO

LO: Bedaque, Hammer, and van Kolck, PRL 82, 463 (1999).
NLO: Ji, Phillips, and Platter, Ann. Phys. 327, 1803 (2012).Betzalel Bazak (HUJI) /πEFT for Nuclei and Hypernuclei 8 / 32



Efimov Physics

Actually we see here the Efimov
effect.
discrete scale invariance:
λn = e−πn/|s|

infinite number of bound states
En = E0e−2πn/|s0| with
e2π/|s0| ≈ 515
Borromean binding

Efimov, Phys. Lett. B 33, 563 (1970)
Review: Naidon and Endo (2017)

Ferlaino and Grimm, Physics 3, 9 (2010)
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Efimov Physics in Ultracold Atoms

39K
Zaccanti et al.,
Nature Phys. 5, 586 (2009).

7Li
Gross et al.,
Phys. Rev. Lett. 103, 163202
(2009).

7Li
Pollack et al.,
Science 326, 1683 (2009)

Ferlaino and Grimm, Physics 3, 9 (2010)
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Efimov Physics in 4He Atoms

Since a is finite here, only two trimers survive.
The excited trimer was also observed experimentally.

Theory: Hiyama and Kamimura, Phys Rev A. 85, 062505 (2012);
Experiment: Kunitski et al., Science 348 551 (2015).
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Efimov Physics in Nuclei

Triton is an Efimov state: Phillips line.
Efimov suggested that the Hoyle state in 12C is universal α trimer
...but long-range Coulomb interaction complicated the analysis.
Maybe 6He? ...but 6He binding is based on nα p-wave resonance.
In other halo nuclei the ground state binding is s-wave. But is there
Efimov spectrum?

Naidon and Endo (2017); H.W. Hammer and L. Platter (2010).
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halo nuclei
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deuteron

Naidon and Endo (2017); H.W. Hammer and L. Platter (2010).
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Efimov physics beyond 3 particles

Heavy fermions can be bound by a light atom, forming Efimov states.

system Lπ M/m Ref.

2+1 1− 13.607 [1]
3+1 1+ 13.384 [2]
4+1 0− 13.279 [3]
5+1 0− — [4]

1. Efimov, Nucl. Phys. A 210, 157 (1973).
2. Castin, Mora, and Pricoupenko, PRL 105, 223201 (2010).
3. Bazak and Petrov, PRL 118, 083002 (2017).
4. Bazak, PRA 96, 022708 (2017).
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Tjon line

Are more terms needed to stabilize heavier systems?
No, since the Tjon line exists, i.e. the correlation between the binding
energies of the triton and the α-particle.

Tjon, Phys. Lett. B 56, 217 (1975).

Platter, Hammer, and Meissner, Phys. Lett. B 607, 254 (2005).
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Clusters of He atoms in short-range EFT

Same is true for 4-, 5- and 6- He atoms clusters, attached to an Efinov
trimer,

0.80 0.85 0.90 0.95 1.00

0

50

100

150

200

250

300

B3
*�3 HmKL

B
N

�N
Hm

K
L

Bazak, Eliyahu and van Kolck, PRA 94, 052502 (2016)

...therefore, no 4, 5 or 6-body terms are needed at LO.
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NLO

The 4-body system at NLO is surprising...

50 100 150 200

2.5

3.0

3.5

4.0

4.5

5.0

5.5

 ◆ LO

○ NLO(2+3)

▲ NLO(2+3+4)

which suggests the need of a new 4-body counter-term!

Bazak, Kirscher, König, Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)
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NLO

This counter-term indeed regularizes also the 5- and 6-body systems.

LO

NLO(2+3)

NLO(2+3+4)
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Bazak, Kirscher, König, Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)
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/πEFT potential

Hammer, König and van Kolck, Rev. Mod. Phys. 92, 025004 (2020)
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Lattice QCD

APS/Alan Stonebraker
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The light hadron spectrum from Lattice QCD

Dürr et al., Science 322, 1224 (2008)
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NPLQCD calculations for SU(3) flavor symmetry
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NPLQCD Collaboration, Phys. Rev. D 87, 034506 (2013).

In nature,
mu ≈ md ≪ ms
mπ ≈ 140 MeV
mN ≈ 939 MeV.

SU(3) flavor
symmetry:
mu = md = ms
mπ ≈ 806 MeV
mN ≈ 1634 MeV.
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EFT for LQCD: observables
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Kirscher, Barnea, Gazit, Pederiva, and van Kolck, Phys. Rev. C 92, 054002 (2015).
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EFT for LQCD: extrapolation
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Eliyahu, Bazak, and Barnea, Phys. Rev. C 102, 044003 (2020).
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p-shell nuclei puzzle

p-shell nuclei are not bound in LO /πEFT !

Schäfer, Contessi, Kirscher and Mares, Phys.Lett. B 816, 136194 (2021).
Betzalel Bazak (HUJI) /πEFT for Nuclei and Hypernuclei 24 / 32



Single Λ pionless EFT

N N N N

π

N N

π

π Δ

N NNN

N Λ N

π

π Σ

Λ N Λ N

π

π Σ

ΛN N
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Single Λ pionless EFT

A=2 A=3 A=4 A=5

S = 0
aNN(

1S0)
3H( 1

2
+
) 4He(0+)

2H(1+)

S = −1

aNΛ(
1S0)

3
ΛH( 1

2
+
) 4

ΛH(0+) 5
ΛHe( 1

2
+
)

aNΛ(
3S1)

3
ΛH( 3

2
+
) 4

ΛH(1+)
3
Λn( 1

2
+
)

. . . fitted (scattering lengths, bound state energies)

. . . prediction (bound states, resonances, ..)
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ΛN scattering data

Experimental data
Alexander et al. (PR173, 1452, 1968)

aΛN(
1S0)=-1.8 fm

aΛN(
3S1)=-1.6 fm

Sechi-Zorn et al. (PR175, 1735, 1968)
0 > aΛN(

1S0) > −9.0 fm
−0.8 > aΛN(

3S1) > −3.2 fm

ΛN interaction models (Gal et al., Rev. Mod. Phys.88, 035004, 2016)

Model aΛN(
1S0) reff

ΛN(
1S0) aΛN(

3S1) reff
ΛN(

3S1)

NSC89 -2.79 2.89 -1.36 3.18

NSC97e -2.17 3.22 -1.84 3.17

NSC97f -2.60 3.05 -1.71 3.33

ESC08c -2.54 3.15 -1.72 3.52

Jülich ’04 -2.56 2.75 -1.66 2.93

EFT (LO) -1.91 1.40 -1.23 2.20

EFT (NLO) -2.91 2.78 -1.54 2.27
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Λ Hypernuclear Overbinding Problem

Most few-body calculations that reproduce ground-state Λ separation
energies, overbind 5

ΛHe by 1-3 MeV.

/πEFT interaction reproduces the reported value Bexp
Λ (5

ΛHe) = 3.12 ± 0.02
MeV.
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Alexander B 

Contessi, Barnea, and Gal, Phys. Rev. Lett. 121, 102502 (2018)
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nnΛ and 3
ΛH∗ - physical motivation

3
ΛH(1/2+)

lightest bound hypernucleus BΛ = 0.13(5) MeV

constraints on ΛN interaction models

3
ΛH∗(3/2+)

no experimental evidence

strict constraint on ΛN S = 1 interaction

JLab C12-19-002 proposal

nnΛ(1/2+)

experiment (HypHI) vs. theory

JLab E12-17-003 experiment

valuable source of nΛ interaction

structure of neutron-rich Λ-hypernuclei

n

Λ p

H(1/2 )Λ
3 +

n

Λ
n

Λ p
n

nnΛ(1/2 )+

H (3/2 )Λ
3 +*
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Implications of just bound nnΛ and 3
ΛH∗

0

2

4

6

8

10

12

14

B
 [M

eV
]

Bound 3H *

(B (3H * )=0.001 MeV)

NSC97f EFT(NLO) EFT(LO) Alex. B

Bound nn
(EB( nn)=-0.001 MeV)

NSC97f EFT(NLO) EFT(LO) Alex. B

(a) (b)

B (4H)
B (4H * )
B (5He)
B (4H ) exp.
B (4H * ) exp.
B (5He) exp.

BΛ(
3
ΛH) is used to fix three-body force in I, S = 0, 1/2 channel and remains unaffected

Schäfer, Bazak, Barnea, and Mares, Phys. Rev. C 103, 025204 (2021).
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Resonance in nnΛ system
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= 1.25fm 1

aS = 0
NN = 18.63fm  rS = 0

NN = 2.44fm
NSC97f; a N =  -1.93 fm 
 aS = 0

N = 2.60fm, rS = 0
N = 3.30fm,

 aS = 1
N = 1.71fm, rS = 1

N = 3.82fm

XEFTNLO; a N =  -1.88 fm 
 aS = 0

N = 2.91fm, rS = 0
N = 3.20fm,

 aS = 1
N = 1.54fm, rS = 1

N = 3.98fm

AlexanderB; a N =  -1.65 fm 
 aS = 0

N = 1.80fm, rS = 0
N = 3.74fm,

 aS = 1
N = 1.60fm, rS = 1

N = 3.92fm

XEFTLO; a N =  -1.4 fm 
 aS = 0

N = 1.91fm, rS = 0
N = 3.66fm,

 aS = 1
N = 1.23fm, rS = 1

N = 4.41fm
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0.4
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Im
(E
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]

= 4.0fm 1

aS = 0
NN = 18.63fm  rS = 0

NN = 0.73fm
NSC97f; a N =  -1.93 fm 
 aS = 0

N = 2.60fm, rS = 0
N = 0.82fm,

 aS = 1
N = 1.71fm, rS = 1

N = 0.87fm

XEFTNLO; a N =  -1.88 fm 
 aS = 0

N = 2.91fm, rS = 0
N = 0.81fm,

 aS = 1
N = 1.54fm, rS = 1

N = 0.88fm

AlexanderB; a N =  -1.65 fm 
 aS = 0

N = 1.80fm, rS = 0
N = 0.86fm,

 aS = 1
N = 1.60fm, rS = 1

N = 0.88fm

XEFTLO; a N =  -1.4 fm 
 aS = 0

N = 1.91fm, rS = 0
N = 0.85fm,

 aS = 1
N = 1.23fm, rS = 1

N = 0.93fm

check of the methods : + CSM · IACCC
Schäfer, Bazak, Barnea, and Mares, Phys. Rev. C 103, 025204 (2021).
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Conclusion

/πEFT and its power counting were introduced.

3-body term comes at LO, 4-body term comes at NLO.

We show implementaions for several physical systems, including 4He
atoms, light s-shell nuclei and hypernuclei.

p-shell nuclei binding is still a puzzle.

/πEFT can bridge the gap between LQCD and nuclear physics.

nnΛ and 3
ΛH∗ are unbound in LO /πEFT .

Question of experimentally observable nnΛ resonance.
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