Pionless Effective Field Theory for Nuclei and Hypernuclei

Betzalel Bazak

The Racah Institute of Physics The Hebrew University of Jerusalem

Online meeting

December 29, 2021

Universality

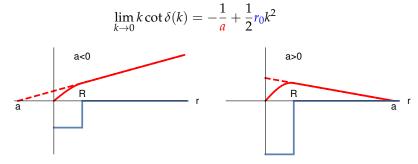
- Consider particles interacting through 2-body potential with range *R*.
- Classically, the particles 'feel' each other only within the potential range.
- But, in the case of resonant interaction, the wave function has much larger extent.
- At low energies, the 2-body physics is govern by the scattering length, a.

$$\lim_{k \to 0} k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2}r_0k^2$$

• When $|a| \gg R$ the potential details has no influence: *Universality*.

Universality

- Consider particles interacting through 2-body potential with range *R*.
- Classically, the particles 'feel' each other only within the potential range.
- But, in the case of resonant interaction, the wave function has much larger extent.
- At low energies, the 2-body physics is govern by the scattering length, *a*.



• When $|a| \gg R$ the potential details has no influence: *Universality*.

- Naturally, $a \approx r_0 \approx R$. Universal systems are fine-tuned to get $a \gg r_0$, R.
- Corrections to universal theory are of order of r_0/a and R/a.
- For a > 0, we have universal dimer with energy $E = -\hbar^2 / ma^2$.
- Nucleus: $a_s \approx -23.4$ fm, $a_t \approx 5.42$ fm, $R = \hbar/m_{\pi}c \approx 1.4$ fm. Deuteron binding energy, 2.22 MeV, is close to $\hbar^2/ma_t^2 \approx 1.4$ MeV.
- ⁴He atoms: $a \approx 95 \text{ Å} \gg r_{vdW} \approx 5.4 \text{ Å}$.
- Ultracold atoms near a Feshbach resonance,

$$a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right)$$

S. Inouye et al., Nature 392, 151 (1998)

- Naturally, $a \approx r_0 \approx R$. Universal systems are fine-tuned to get $a \gg r_0$, R.
- Corrections to universal theory are of order of r_0/a and R/a.
- For a > 0, we have universal dimer with energy $E = -\hbar^2 / ma^2$.
- Nucleus: $a_s \approx -23.4$ fm, $a_t \approx 5.42$ fm, $R = \hbar/m_{\pi}c \approx 1.4$ fm. Deuteron binding energy, 2.22 MeV, is close to $\hbar^2/ma_t^2 \approx 1.4$ MeV.
- ⁴He atoms: $a \approx 95 \text{ Å} \gg r_{vdW} \approx 5.4 \text{ Å}$.
- Ultracold atoms near a Feshbach resonance,

$$a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right)$$

S. Inouye et al., Nature 392, 151 (1998)

- Naturally, $a \approx r_0 \approx R$. Universal systems are fine-tuned to get $a \gg r_0$, R.
- Corrections to universal theory are of order of r_0/a and R/a.
- For a > 0, we have universal dimer with energy $E = -\hbar^2 / ma^2$.
- Nucleus: $a_s \approx -23.4$ fm, $a_t \approx 5.42$ fm, $R = \hbar/m_{\pi}c \approx 1.4$ fm. Deuteron binding energy, 2.22 MeV, is close to $\hbar^2/ma_t^2 \approx 1.4$ MeV.

• ⁴He atoms:
$$a \approx 95 \text{ Å} \gg r_{vdW} \approx 5.4 \text{ Å}$$
.

• Ultracold atoms near a Feshbach resonance,

$$a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right)$$

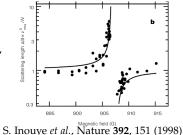
S. Inouye et al., Nature 392, 151 (1998)

- Naturally, $a \approx r_0 \approx R$. Universal systems are fine-tuned to get $a \gg r_0$, R.
- Corrections to universal theory are of order of r_0/a and R/a.
- For a > 0, we have universal dimer with energy $E = -\hbar^2 / ma^2$.
- Nucleus: $a_s \approx -23.4$ fm, $a_t \approx 5.42$ fm, $R = \hbar/m_{\pi}c \approx 1.4$ fm. Deuteron binding energy, 2.22 MeV, is close to $\hbar^2/ma_t^2 \approx 1.4$ MeV.

• ⁴He atoms:
$$a \approx 95 \text{ Å} \gg r_{vdW} \approx 5.4 \text{ Å}$$
.

• Ultracold atoms near a Feshbach resonance,

$$a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right)$$

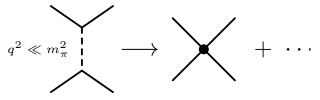


- Typically in physics we have an "underlying" theory, valid at a mass scale M_{hi} , but we want to study processes at momenta $Q \approx M_{lo} \ll M_{hi}$.
- For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{OCD} \approx 1$ GeV.
- Effective Field Theory (EFT) is a framework to construct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian has the same symmetries as the underlying theory.
- The details of the underlying dynamics are contained in the interaction strengths.

- Typically in physics we have an "underlying" theory, valid at a mass scale M_{hi}, but we want to study processes at momenta Q ≈ M_{lo} ≪ M_{hi}.
- For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{QCD} \approx 1$ GeV.
- Effective Field Theory (EFT) is a framework to construct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian has the same symmetries as the underlying theory.
- The details of the underlying dynamics are contained in the interaction strengths.

- Typically in physics we have an "underlying" theory, valid at a mass scale M_{hi}, but we want to study processes at momenta Q ≈ M_{lo} ≪ M_{hi}.
- For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{QCD} \approx 1$ GeV.
- Effective Field Theory (EFT) is a framework to construct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian has the same symmetries as the underlying theory.
- The details of the underlying dynamics are contained in the interaction strengths.

- Typically in physics we have an "underlying" theory, valid at a mass scale M_{hi}, but we want to study processes at momenta Q ≈ M_{lo} ≪ M_{hi}.
- For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{QCD} \approx 1$ GeV.
- Effective Field Theory (EFT) is a framework to construct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian has the same symmetries as the underlying theory.
- The details of the underlying dynamics are contained in the interaction strengths.



Pionless or Short-Range EFT

• For spinless bosons, the two body-sector has a single term at LO,

 $V_{LO} = a_1.$

• and another one at NLO,

$$V_{NLO} = b_1(p^2 + p'^2).$$

• The LO term is iterated; the NLO term is treated as perturbation.

• Equivalent to the effective range expansion.

Pionless or Short-Range EFT

• For spinless bosons, the two body-sector has a single term at LO,

 $V_{LO} = a_1.$

• and another one at NLO,

$$V_{NLO} = b_1(p^2 + p'^2).$$

• The LO term is iterated; the NLO term is treated as perturbation.

• Equivalent to the effective range expansion.

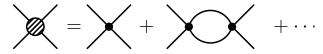
• For spinless bosons, the two body-sector has a single term at LO,

$$V_{LO} = a_1.$$

and another one at NLO,

$$V_{NLO} = b_1(p^2 + p'^2).$$

• The LO term is iterated; the NLO term is treated as perturbation.



Equivalent to the effective range expansion.

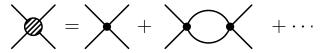
• For spinless bosons, the two body-sector has a single term at LO,

$$V_{LO} = a_1.$$

and another one at NLO,

$$V_{NLO} = b_1(p^2 + p'^2).$$

• The LO term is iterated; the NLO term is treated as perturbation.



• Equivalent to the effective range expansion.

• In coordinate space, we have at LO a contact interaction,

 $V(r_{ij}) = \tilde{C}^{(0)}\delta(r_{ij}).$

- This interaction needs regularization and renormalization.
- The bound state of two identical bosons ($\hbar = c = 1$),

$$-\frac{1}{m}\nabla^2\psi(r) + \tilde{C}^{(0)}\delta(r)\psi(r) = -B_2\psi(r)$$

and in momentum space,

$$\frac{p^2}{m}\phi(p) + \tilde{C}^{(0)}\int \frac{d^3p'}{(2\pi)^3}\phi(p') = -B_2\phi(p)$$

Therefore,

$$\frac{1}{\tilde{C}^{(0)}} = \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'^2/m + B_2}$$

which diverges

• In coordinate space, we have at LO a contact interaction,

$$V(r_{ij}) = \tilde{C}^{(0)}\delta(r_{ij}).$$

- This interaction needs regularization and renormalization.
- The bound state of two identical bosons ($\hbar = c = 1$),

$$-\frac{1}{m}\nabla^2\psi(r) + \tilde{C}^{(0)}\delta(r)\psi(r) = -B_2\psi(r)$$

and in momentum space,

$$\frac{p^2}{m}\phi(p) + \tilde{C}^{(0)}\int \frac{d^3p'}{(2\pi)^3}\phi(p') = -B_2\phi(p)$$

Therefore,

$$\frac{1}{\tilde{C}^{(0)}} = \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'^2/m + B_2}$$

which diverges

• In coordinate space, we have at LO a contact interaction,

$$V(r_{ij}) = \tilde{C}^{(0)}\delta(r_{ij}).$$

- This interaction needs regularization and renormalization.
- The bound state of two identical bosons ($\hbar = c = 1$),

$$-\frac{1}{m}\nabla^2\psi(r) + \tilde{C}^{(0)}\delta(r)\psi(r) = -B_2\psi(r)$$

and in momentum space,

$$\frac{p^2}{m}\phi(p) + \tilde{C}^{(0)} \int \frac{d^3p'}{(2\pi)^3}\phi(p') = -B_2\phi(p)$$

Therefore,

$$\frac{1}{\tilde{C}^{(0)}} = \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'^2/m + B_2}$$

which diverges

• In coordinate space, we have at LO a contact interaction,

$$V(r_{ij}) = \tilde{C}^{(0)}\delta(r_{ij}).$$

- This interaction needs regularization and renormalization.
- The bound state of two identical bosons ($\hbar = c = 1$),

$$-\frac{1}{m}\nabla^2\psi(r) + \tilde{C}^{(0)}\delta(r)\psi(r) = -B_2\psi(r)$$

and in momentum space,

$$\frac{p^2}{m}\phi(p) + \tilde{C}^{(0)} \int \frac{d^3p'}{(2\pi)^3}\phi(p') = -B_2\phi(p)$$

Therefore,

$$\frac{1}{\tilde{C}^{(0)}} = \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'^2/m + B_2}$$

which diverges!

Renormalization

• To regularize, we can smear the interaction over a range of $1/\Lambda$,

$$\delta_{\Lambda}(r) \equiv \frac{\Lambda^3}{8\pi^{3/2}} \exp[-(\Lambda r/2)^2], \quad \delta_{\Lambda}(r) \stackrel{\Lambda \to \infty}{\longrightarrow} \delta(r).$$

Doing so for the incoming and outcoming momenta we have,

$$\frac{1}{\tilde{C}^{(0)}(\Lambda)} = \int \frac{d^3p'}{(2\pi)^3} \frac{exp(-2p'^2/\Lambda^2)}{p'^2/m + B_2}$$

• Which can be expand by powers of Q_2/Λ , ($Q_2 = \sqrt{mB_2}$)

$$\tilde{C}^{(0)}(\Lambda) = \frac{4\sqrt{2}\pi^{3/2}}{m\Lambda} \left(1 + \sqrt{2\pi}\frac{Q_2}{\Lambda} + \ldots\right).$$

• ...therfore our Low Energy Constant (LEC) $\tilde{C}^{(0)} = \tilde{C}^{(0)}(\Lambda)$ is now renormalized by some experimental data, here B_2 .

• To regularize, we can smear the interaction over a range of $1/\Lambda$,

$$\delta_{\Lambda}(r) \equiv \frac{\Lambda^3}{8\pi^{3/2}} \exp[-(\Lambda r/2)^2], \quad \delta_{\Lambda}(r) \stackrel{\Lambda \to \infty}{\longrightarrow} \delta(r).$$

• Doing so for the incoming and outcoming momenta we have,

$$\frac{1}{\tilde{C}^{(0)}(\Lambda)} = \int \frac{d^3p'}{(2\pi)^3} \frac{exp(-2p'^2/\Lambda^2)}{p'^2/m + B_2}$$

• Which can be expand by powers of Q_2/Λ , ($Q_2 = \sqrt{mB_2}$)

$$\tilde{C}^{(0)}(\Lambda) = \frac{4\sqrt{2}\pi^{3/2}}{m\Lambda} \left(1 + \sqrt{2\pi}\frac{Q_2}{\Lambda} + \dots\right).$$

• ...therfore our Low Energy Constant (LEC) $\tilde{C}^{(0)} = \tilde{C}^{(0)}(\Lambda)$ is now renormalized by some experimental data, here B_2 .

• To regularize, we can smear the interaction over a range of $1/\Lambda$,

$$\delta_{\Lambda}(r) \equiv \frac{\Lambda^3}{8\pi^{3/2}} \exp[-(\Lambda r/2)^2], \quad \delta_{\Lambda}(r) \stackrel{\Lambda \to \infty}{\longrightarrow} \delta(r).$$

• Doing so for the incoming and outcoming momenta we have,

$$\frac{1}{\tilde{C}^{(0)}(\Lambda)} = \int \frac{d^3p'}{(2\pi)^3} \frac{exp(-2p'^2/\Lambda^2)}{p'^2/m + B_2}$$

• Which can be expand by powers of Q_2/Λ , ($Q_2 = \sqrt{mB_2}$)

$$\tilde{C}^{(0)}(\Lambda) = \frac{4\sqrt{2}\pi^{3/2}}{m\Lambda} \left(1 + \sqrt{2\pi}\frac{Q_2}{\Lambda} + \dots\right).$$

• ...therfore our Low Energy Constant (LEC) $\tilde{C}^{(0)} = \tilde{C}^{(0)}(\Lambda)$ is now renormalized by some experimental data, here B_2 .

• To regularize, we can smear the interaction over a range of $1/\Lambda$,

$$\delta_{\Lambda}(r) \equiv \frac{\Lambda^3}{8\pi^{3/2}} \exp[-(\Lambda r/2)^2], \quad \delta_{\Lambda}(r) \stackrel{\Lambda \to \infty}{\longrightarrow} \delta(r).$$

• Doing so for the incoming and outcoming momenta we have,

$$\frac{1}{\tilde{C}^{(0)}(\Lambda)} = \int \frac{d^3p'}{(2\pi)^3} \frac{exp(-2p'^2/\Lambda^2)}{p'^2/m + B_2}$$

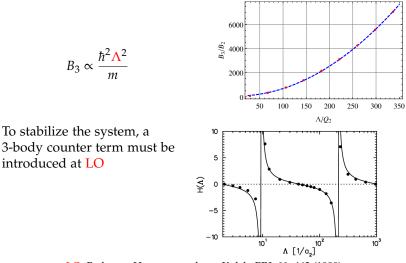
• Which can be expand by powers of Q_2/Λ , ($Q_2 = \sqrt{mB_2}$)

$$\tilde{C}^{(0)}(\Lambda) = \frac{4\sqrt{2}\pi^{3/2}}{m\Lambda} \left(1 + \sqrt{2\pi}\frac{Q_2}{\Lambda} + \ldots\right).$$

• ...therfore our Low Energy Constant (LEC) $\tilde{C}^{(0)} = \tilde{C}^{(0)}(\Lambda)$ is now renormalized by some experimental data, here B_2 .

Three-boson system

Trying to calculate the trimer binding energy we get the Thomas collapse:



LO: Bedaque, Hammer, and van Kolck, PRL 82, 463 (1999).

Betzalel Bazak (HUJINLO: Ji, Phillips, and Platter, Ann. Phys. 327, 1803 (2012). #EFT for Nuclei and Hypernuclei 8/32

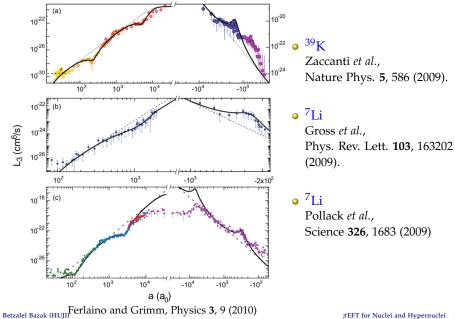
Efimov Physics

- Actually we see here the Efimov effect.
- discrete scale invariance: $\lambda_n = e^{-\pi n/|s|}$
- infinite number of bound states $E_n = E_0 e^{-2\pi n/|s_0|}$ with $e^{2\pi/|s_0|} \approx 515$
- Borromean binding

Efimov, Phys. Lett. B **33**, 563 (1970) Review: Naidon and Endo (2017)

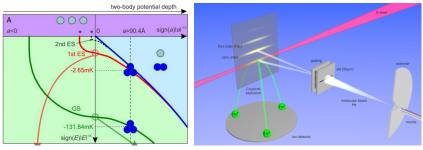
Ferlaino and Grimm, Physics 3, 9 (2010)

Efimov Physics in Ultracold Atoms



Efimov Physics in ⁴He Atoms

- Since *a* is finite here, only two trimers survive.
- The excited trimer was also observed experimentally.



Theory: Hiyama and Kamimura, Phys Rev A. **85**, 062505 (2012); Experiment: Kunitski *et al.*, Science **348** 551 (2015).

• Triton is an Efimov state: Phillips line.

- Efimov suggested that the Hoyle state in ¹²C is universal *α* trimer ...but long-range Coulomb interaction complicated the analysis.
- Maybe ⁶He? ...but ⁶He binding is based on $n\alpha$ *p*-wave resonance.
- In other halo nuclei the ground state binding is *s*-wave. But is there Efimov spectrum?

Naidon and Endo (2017); H.W. Hammer and L. Platter (2010).

- Triton is an Efimov state: Phillips line.
- Efimov suggested that the Hoyle state in ¹²C is universal *α* trimer ...but long-range Coulomb interaction complicated the analysis.
- Maybe ⁶He? ...but ⁶He binding is based on $n\alpha$ *p*-wave resonance.
- In other halo nuclei the ground state binding is *s*-wave. But is there Efimov spectrum?

Naidon and Endo (2017); H.W. Hammer and L. Platter (2010).

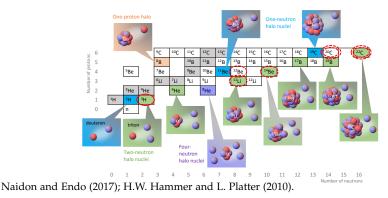
- Triton is an Efimov state: Phillips line.
- Efimov suggested that the Hoyle state in ¹²C is universal *α* trimer ...but long-range Coulomb interaction complicated the analysis.
- Maybe ⁶He? ...but ⁶He binding is based on $n\alpha$ *p*-wave resonance.
- In other halo nuclei the ground state binding is *s*-wave. But is there Efimov spectrum?

Naidon and Endo (2017); H.W. Hammer and L. Platter (2010).

- Triton is an Efimov state: Phillips line.
- Efimov suggested that the Hoyle state in ¹²C is universal *α* trimer ...but long-range Coulomb interaction complicated the analysis.
- Maybe ⁶He? ...but ⁶He binding is based on $n\alpha$ *p*-wave resonance.
- In other halo nuclei the ground state binding is *s*-wave. But is there Efimov spectrum?

Naidon and Endo (2017); H.W. Hammer and L. Platter (2010).

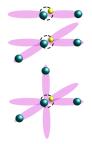
- Triton is an Efimov state: Phillips line.
- Efimov suggested that the Hoyle state in ¹²C is universal *α* trimer ...but long-range Coulomb interaction complicated the analysis.
- Maybe ⁶He? ...but ⁶He binding is based on $n\alpha$ *p*-wave resonance.
- In other halo nuclei the ground state binding is *s*-wave. But is there Efimov spectrum?



Efimov physics beyond 3 particles

• Heavy fermions can be bound by a light atom, forming Efimov states.

system	L^{π}	M/m	Ref.
2+1	1-	13.607	[1]
3+1	1^+	13.384	[2]
4+1	0^{-}	13.279	[3]
5+1	0^{-}	—	[4]



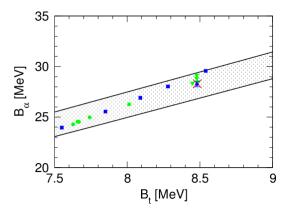
- 1. Efimov, Nucl. Phys. A 210, 157 (1973).
- 2. Castin, Mora, and Pricoupenko, PRL 105, 223201 (2010).
- 3. Bazak and Petrov, PRL 118, 083002 (2017).
- 4. Bazak, PRA 96, 022708 (2017).

Tjon line

Are more terms needed to stabilize heavier systems?

No, since the Tjon line exists, i.e. the correlation between the binding energies of the triton and the α -particle.

Tjon, Phys. Lett. B 56, 217 (1975).



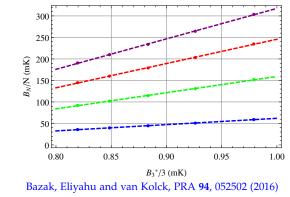
Platter, Hammer, and Meissner, Phys. Lett. B 607, 254 (2005).

Betzalel Bazak (HUJI)

#EFT for Nuclei and Hypernuclei 14 / 32

Clusters of He atoms in short-range EFT

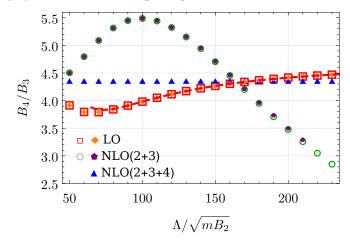
• Same is true for 4-, 5- and 6- He atoms clusters, attached to an Efinov trimer,



...therefore, no 4, 5 or 6-body terms are needed at LO.

NLO

The 4-body system at NLO is surprising...



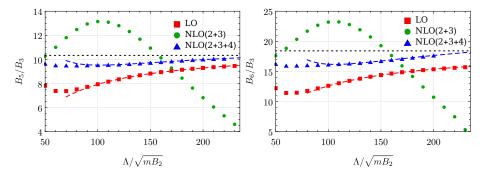
which suggests the need of a new 4-body counter-term!

Bazak, Kirscher, König, Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019) Betzalel Bazak (HUJI)

#EFT for Nuclei and Hypernuclei 16 / 32

NLO

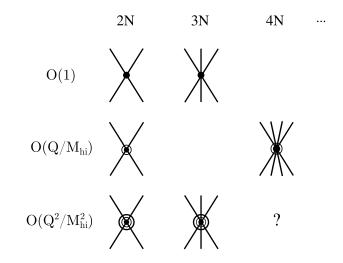
This counter-term indeed regularizes also the 5- and 6-body systems.



Bazak, Kirscher, König, Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)

Betzalel Bazak (HUJI)

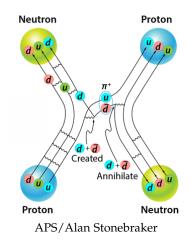
*π***EFT potential**

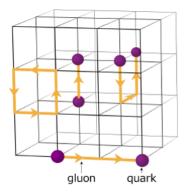


Hammer, König and van Kolck, Rev. Mod. Phys. 92, 025004 (2020)

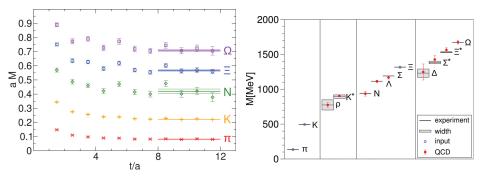
Betzalel Bazak (HUJI)

• • •



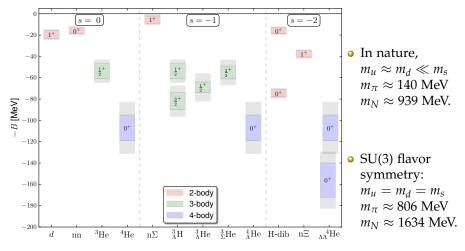


The light hadron spectrum from Lattice QCD



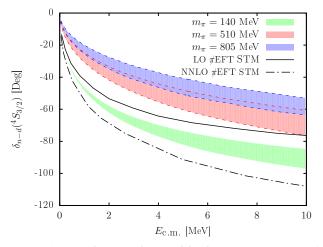
Dürr et al., Science 322, 1224 (2008)

NPLQCD calculations for SU(3) flavor symmetry



NPLQCD Collaboration, Phys. Rev. D 87, 034506 (2013).

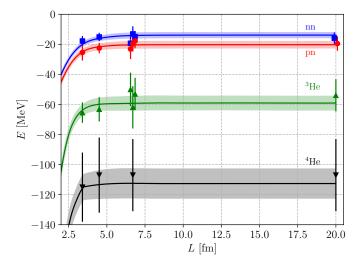
EFT for LQCD: observables



Kirscher, Barnea, Gazit, Pederiva, and van Kolck, Phys. Rev. C 92, 054002 (2015).

Betzalel Bazak (HUJI)

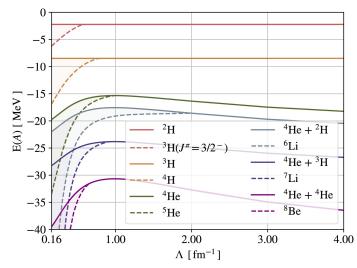
EFT for LQCD: extrapolation



Eliyahu, Bazak, and Barnea, Phys. Rev. C 102, 044003 (2020).

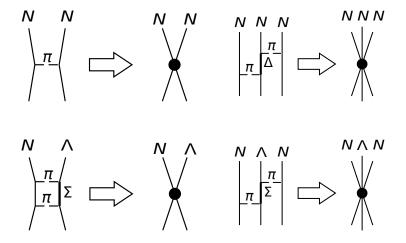
p-shell nuclei puzzle

p-shell nuclei are not bound in LO #EFT !



Betzalel Bazak (HUJI) Schäfer, Contessi, Kirscher and Mares, Phys.Lett. B 816, 136194 (2021).

Single Λ pionless EFT



	A=2	A=3	A=4	A=5
$\mathcal{S} = 0$	$a_{NN}(^1S_0)$	${}^{3}H(\frac{1}{2}^{+})$	${}^{4}\text{He}(0^{+})$	
	${}^{2}H(1^{+})$			
S = -1	$a_{N\Lambda}(^{1}S_{0})$	$^3_\Lambda H({\textstyle\frac{1}{2}}^+)$	$^4_\Lambda { m H}(0^+)$	$^{5}_{\Lambda}\text{He}(^{1}_{2}^{+})$
	$a_{N\Lambda}(^{3}S_{1})$	$^3_\Lambda H(^{3+}_2)$	$^4_{\Lambda} { m H}(1^+)$	
		${}^3_\Lambda n({\textstyle\frac12}^+)$		

... fitted (scattering lengths, bound state energies) ... prediction (bound states, resonances, ..)

ΛN scattering data

Experimental data

 $0 > a_{\Lambda N}({}^{1}S_{0}) > -9.0 \text{ fm}$ $-0.8 > a_{\Lambda N}({}^{3}S_{1}) > -3.2 \text{ fm}$

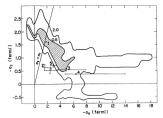


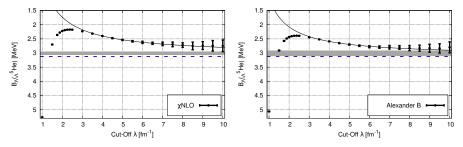
Fig. 9. Mapping of the likelihood function L in the a_{-q} plane for the four-parameter fit. The shaded area includes all points with likelihood values above $L_{max}(\exp 0.5, where L_{max}$ is the value of the best fit (point f). The external smooth curve encloses likelihood values jying above $L_{max}(\exp 0.5, 0.0)$ points 1–5 represent scattering lengths derived from early hypernuclei calculations.

Model	$a_{\Lambda N}(^1S_0)$	$r_{\Lambda N}^{e\!f\!f}({}^1S_0)$	$a_{\Lambda N}(^{3}S_{1})$	$r_{\Lambda N}^{e\!f\!f}({}^3S_1)$
NSC89	-2.79	2.89	-1.36	3.18
NSC97e	-2.17	3.22	-1.84	3.17
NSC97f	-2.60	3.05	-1.71	3.33
ESC08c	-2.54	3.15	-1.72	3.52
Jülich '04	-2.56	2.75	-1.66	2.93
EFT (LO)	-1.91	1.40	-1.23	2.20
EFT (NLO)	-2.91	2.78	-1.54	2.27

 ΛN interaction models (Gal et al., Rev. Mod. Phys.88, 035004, 2016)

Λ Hypernuclear Overbinding Problem

- Most few-body calculations that reproduce ground-state Λ separation energies, overbind ${}^{5}_{\Lambda}$ He by 1-3 MeV.
- π EFT interaction reproduces the reported value $B_{\Lambda}^{exp}(^{5}_{\Lambda}\text{He}) = 3.12 \pm 0.02$ MeV.



Contessi, Barnea, and Gal, Phys. Rev. Lett. 121, 102502 (2018)

$nn\Lambda$ and $^3_\Lambda H^*$ - physical motivation

 $^3_\Lambda H(1/2^+)$

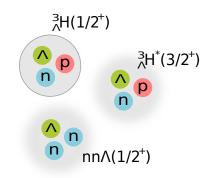
- lightest bound hypernucleus $B_{\Lambda} = 0.13(5)$ MeV
- constraints on ΛN interaction models

 $^{3}_{\Lambda}H^{*}(3/2^{+})$

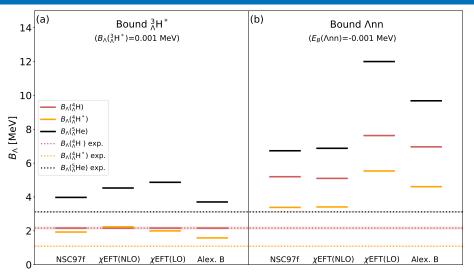
- no experimental evidence
- strict constraint on $\Lambda N S = 1$ interaction
- JLab C12-19-002 proposal

 $nn\Lambda(1/2^+)$

- experiment (HypHI) vs. theory
- JLab E12-17-003 experiment
- valuable source of $n\Lambda$ interaction
- structure of neutron-rich Λ-hypernuclei



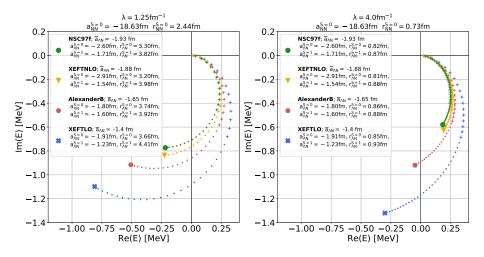
Implications of just bound $nn\Lambda$ and $^3_{\Lambda}H^*$



• $B_{\Lambda}(^{3}_{\Lambda}\text{H})$ is used to fix three-body force in I, S = 0, 1/2 channel and remains unaffected

Schäfer, Bazak, Barnea, and Mares, Phys. Rev. C 103, 025204 (2021). #EFT for Nuclei and Hypernuclei 30 / 32

Resonance in $nn\Lambda$ system



check of the methods : + CSM • IACCC Schäfer, Bazak, Barnea, and Mares, Phys. Rev. C 103, 025204 (2021).

Betzalel Bazak (HUJI)

- *#*EFT and its power counting were introduced.
- 3-body term comes at LO, 4-body term comes at NLO.
- We show implementaions for several physical systems, including ⁴He atoms, light s-shell nuclei and hypernuclei.
- p-shell nuclei binding is still a puzzle.
- *t*EFT can bridge the gap between LQCD and nuclear physics.
- nnA and ${}^3_{\Lambda}$ H^{*} are unbound in LO #EFT .
- Question of experimentally observable nn Λ resonance.