Group Meeting 10.25

Reading Phys. Rev. Lett 127, 262502 (2021)

First Observation of the Four-Proton Unbound Nucleus ${ }^{18} \mathbf{M g}$

Hao Liu
Zetian Ma

Result

They assume the decay takes two steps.

$$
\begin{aligned}
& { }_{12}^{18} \mathrm{Mg} \text { g.s. } \rightarrow{ }_{10}^{16} \mathrm{Ne} \text { g.s. }+2 p \\
& { }_{10}^{16} \mathrm{Ne} \text { g.s. } \rightarrow{ }_{8}^{14} \mathrm{O} \text { g.s. }+2 p
\end{aligned}
$$

FIG 1: The Decay energy spectra for the indicated subsystems of ${ }^{18} \mathrm{Mg}_{g . s,}$, like core +p , core +2 p , core $+3 \mathrm{p}, \mathrm{p}+\mathrm{p}$. The red lines are the result from

Result

FIG 2: Excitation energies (E_{x}, in MeV) and widths (in keV) of ground and excited states. Energies are given with respect to the ${ }^{14} \mathrm{O}$ core. [1]

[1] N. Michel, J. G. Li, F. R. Xu, and W. Zuo, Phys. Rev. C 103, 044319 (2021).

Result

The known ${ }_{10}^{16} N e_{\text {g.s. }}$ decay is dominated by the emission of $2 \mathrm{sl} / 2$ protons.[2]

[2]. T. B. Webb, R. J. Charity, J. M. Elson, D. E. M. Hoff, C. D. Pruitt, L. G. Sobotka, K. W. Brown, J. Barney, G. Cerizza, J. Estee et al., Phys. Rev. C 100, 024306 (2019).

Result

Calculation

The shell calculation also proved the change in levels.

	effective singleparticle energies	Occupation number(0+)	Occupation num	
$1 d_{5 / 2}$	2.72 MeV	2.14	2.40	+0.26
${ }_{1 S} S_{1 / 2}$	1.28MeV	1.62	1.40	-0.22
$\begin{array}{ll} \mathrm{o} p_{1 / 2} \\ \mathrm{o} p_{3 / 2} & - \end{array}$				
$0 s_{1 / 2}$	${ }_{12}^{18} M g$ calculated by the Gamow shell model			

Calculation

The shell calculation also proved the change in levels.

	effective singleparticle energies	Occupation number(0+)	Occupation nu	
$1 d_{5 / 2}$	2.84 MeV	2.40	2.56	+0.16
${ }^{1} S_{1 / 2}$	2.00 MeV	1.29	1.16	-0.13
$\begin{array}{ll} \mathrm{o} p_{1 / 2} & - \\ \mathrm{o} p_{3 / 2} & - \end{array}$				
OS $S_{1 / 2}$	${ }_{12}^{18} \mathrm{Mg}$ calculated by the $\mathrm{HO}-\mathrm{SM}$ (harmonicoscillator shell model)			

Calculation

The shell calculation also proved the change in levels.

$1 S_{1 / 2}$	effective singleparticle energies$0.76 \mathrm{MeV}$	Occupation number(0+)	Occupation number(2+)	
		0.27	0.45	+0.18
$1 d_{5 / 2}$	${ }^{-0.75 M e V}$	3.46	$3 \cdot 33$	-0.13
op $p_{1 / 2}$				
op ${ }_{3 / 2}$				
$\mathrm{OS}_{1 / 2}$	${ }_{12}^{20} \mathrm{Mg}$ calculated by the GSM, with ${ }^{16} O+4 p$			

Calculation

The shell calculation also proved the change in levels.

		effective single- particle energies	Occupation number $(0+$)	Occupation number $(2+)$

Calculation

For ${ }_{12}^{20} M g_{8}$, it doesn't make a difference between GSM and HO-SM.

For ${ }_{12}^{18} \mathrm{Mg}_{6}$, GSM performs better than HO-SM.

FIG 3: Comparison of experimental results and theoretical calculations of GSM and HO-SM.

Calculation

FIG 4: Excitation energies of the first $2+$ states for a series of isotopes (a) and isotones (b) for Z or $\mathrm{N}=10,12$, and 14 .

Calculation

$\mathrm{OS}_{1 / 2}-\longrightarrow$

