TANTHCO Seminar, 2022.7.28

Faddeev calculations of three-neutron systems

Souichi Ishikawa Hosei University, Tokyo, Japan

石川壮一@法政大学

1. Introduction

Isospin of three-nucleon (3N) systems $\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{1}{2} = \frac{1}{2}$ or $\frac{3}{2}$

		nnn	nnp	npp	ppp				
	Т	T_{Z}							
	$T = \frac{1}{2}$		$-\frac{1}{2}\left[{}^{3}\mathrm{H},nd\right]$	$+\frac{1}{2}\left[{}^{3}\text{He,}pd\right]$					
	$T = \frac{3}{2}$	$-\frac{3}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{3}{2}$				

- Mostly studied 3N systems: Examination of "bare" nucleon-nucleon (pp and pn) force models.
- Rigorous 3N calculations assure the existence of 3N forces

 \rightarrow applied to heavier nuclei

1. Introduction

- What can we learn from the study of $T = \frac{3}{2}$ 3N systems (*nnn*, *ppp*)?
 - -- direct information of *nn*-force and $T = \frac{3}{2}$ 3N forces
 - \rightarrow apply to neutron-rich nuclei, neutron matter (neutron star)
- How to study $T = \frac{3}{2}$ 3N systems (*nnn*, *ppp*):
 - -- No bound state
 - -- Final state of reactions: e.g., ${}^{3}\text{He}(\pi^{-},\pi^{+})3n$, ${}^{3}\text{H}(n,p)3n$

1. Introduction

• Experimental search for 3n resonance

³He(π^- , π^+)3*n*, ⁷Li(*n*,3*n*), ⁷Li(⁷Li, ¹¹C)3*n*, ⁷Li(¹¹B, ¹⁵O)3*n*, ... Mostly negative, but a few positive results

• Experimental results that suggested the existence of 4n resonant state: $\binom{14}{Be}, \frac{10}{Be} + 4n$ [2002], $^{4}He(\binom{8}{He}, \binom{8}{Be}$ [2016], $^{7}Li(\binom{7}{Li}, \binom{10}{2022}]$, $^{8}He(p, p \binom{4}{He})$ [2022] Refs:

Marqués et al., PRC**65** (2002), Kisamori et al., PRL **116** (2016), Faestermann et al., PLB **824** (2022), M. Duer et al., Nature **606** (2022)

- Theoretical studies on 3n & 4n systems \rightarrow contradictory results
- Review:

Marqués & Carbonell (2021). Euro. Phys. J. A **57** (2021) 105. https://doi.org/10.1140/epja/s10050-021-00417-8 In this presentation:

- Quick review of theoretical calculations of 3n & 4n systems
- Theoretical method to study 3*n* continuum state [Response function, Faddeev method]
- Results of 3n

Ref.: S. Ishikawa, Three-neutron bound and continuum states. PRC **102** (2020) 034002 <u>https://doi.org/10.1103/PhysRevC.102.034002</u>

• Results of 3p

Ref.: S. Ishikawa, Spin-isospin excitation of ³He with three-proton final state. Prog. Theor. and Exp. Phys. **2018** (2018) 013D03 <u>https://doi.org/10.1093/ptep/ptx183</u>

- 2. Theoretical study for 3n- (& 4n-) resonance
 - Realistic nucleon-nucleon potentials
 No bound state for 3n- & 4n-systems
 - Resonance is related to a pole of t-matrix in complex energy

Pole trajectory in complex energy plane

Scattering t-matrix for complex energy $\boldsymbol{\omega}$

$$t(\omega) = V + V \frac{1}{\omega - H_0} t(\omega) = V + V \frac{1}{\omega - H_0 - V} V$$

Discrete eigen value $[H_0 + V]|\Psi(z)\rangle = z|\Psi(z)\rangle$

$$t(\omega) = V + V |\Psi(z)\rangle \frac{1}{\omega - z} \langle \Psi(z) | V + \cdots$$

- Bound state: $z = E_b$, \rightarrow pole at real energy $E_b < 0$

Complex energy:
$$z = E_r - \frac{i}{2}\Gamma \rightarrow \text{pole at}\left(E_r, -\frac{1}{2}\Gamma\right)$$

3n studies in complex energy

- Complex energy eigenvales (1)
 - Analytic continuation with separable potentials
- Complex energy eigenvales (2)
 - Complex scaling method $x \to x e^{i\varphi}$

 \rightarrow Unphysically large attractive effect is required to obtaine 3n bound state (or resonance)

Pole trajectory for 3n states with separable nn potential

PHYSICAL REVIEW C 66, 054001 (2002)

Indications for the nonexistence of three-neutron resonances near the physical region

A. Hemmdan,^{1,2,*} W. Glöckle,^{1,†} and H. Kamada^{3,‡}

Separable *nn* potential: $\langle x|V|x'\rangle = -\lambda v(x) v(x')$

Pole trajectory for 3n states with additional 3n potential

PHYSICAL REVIEW C 71, 044004 (2005)

Three-neutron resonance trajectories for realistic interaction models

Rimantas Lazauskas* DPTA/Service de Physique Nucléaire, CEA/DAM Ile de France, BP 12, F-91680 Bruyères-le-Châtel, France

Jaume Carbonell[†]

$$V_{3n} = -W \frac{e^{-\frac{\rho}{\rho_0}}}{\rho}, \quad \text{with } \rho = \sqrt{x_{ij}^2 + y_{ij}^2}$$
(13)

with $\rho_0 = 2$ fm. In this way, dineutron physics is not affected.

TABLE V. Critical strengths W_0 in MeV fm of the phenomenological Yukawa-type force of Eq. (13) required to bind the three neutron in various states. Parameter ρ_0 of this force was fixed to 2 fm. W' are the values at which three-neutron resonances become subthreshold ones, whereas B_{trit} are such 3NF corresponding triton binding energies in MeV.

J^{π}	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{5}{2}^+$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$	
W_0	307	1062	809	515	413	629	3n (T
W'	152	_	329	118	146	277	X
B _{trit}	21.35	_	44.55	17.72	20.69	37.05] _{nnp}
							-

3n and 4n studies at real energy

• Neutrons confined in a trapping potential:

$$W(r_i) = V_0 \frac{1}{1 + e^{(r_i - R)/a_{WS}}}$$

Extrapolate to real world [Strength $V_0 \rightarrow 0$]

 \rightarrow Existence of 3n and 4n resonance

Energies for 3n and 4n states

Energies for 3n and 4n states

3. How to study 3-body system without 2-body bound state

Notations:

• Total Hamiltonian (only 2NF for simplicity)

$$H = H_0 + V_1 + V_2 + V_3$$

$$V_1 = V_{23} \quad etc. \text{ (odd man out notation)}$$

- (Asymptotic) 3-body states are specified by momentum-variables $\vec{q}, \vec{p} \qquad |\vec{q}, \vec{p}\rangle$ $H_0|E; \vec{q}, \vec{p}\rangle = E|E; \vec{q}, \vec{p}\rangle, \qquad E = \frac{\hbar^2}{m}q^2 + \frac{3\hbar^2}{4m}p^2 = E_q + E_p$
- Eigenstate of 3-body Hamiltonian with going (+) / incoming (-) boundary conditions:

$$H\left|\Psi_{\vec{q}\vec{p}}^{(\pm)}(E)\right\rangle = E\left|\Psi_{\vec{q}\vec{p}}^{(\pm)}(E)\right\rangle$$

Reactions to study 3n & 3p states

- Reactions to produce 3n (or 3p) state with simple reaction mechanism e.g., ${}^{3}H(n,p)3n$ ${}^{3}He(p,n)3p$
- In PWIA

Two processes:
$$n + p \to p + n$$
, ${}^{3}\text{H} \to nnn \text{ (or }{}^{3}\text{He} \to ppp)$
Transition amplitude: $T \propto t_{np \to pn} \times \left\langle \left\langle \Psi_{\vec{q}\vec{p}}^{(-)}(E) \middle| \hat{O} \middle| \Psi_{b} \right\rangle \right\rangle$

Response functions

• In PWIA, the cross section can be written in terms of response function:

$$R_{\hat{O}}(E) = \int d\vec{q} d\vec{p} \left| \left\langle \Psi_{\vec{q}\vec{p}}^{(-)} (E_q + E_p) \middle| \hat{O} \middle| \Psi_b \right\rangle \right|^2 \delta(E - E_q - E_p)$$
$$= \left| -\frac{1}{\pi} \operatorname{Im} \left\langle \Psi_b \middle| \hat{O}^{\dagger} \frac{1}{E + i\varepsilon - H} \hat{O} \middle| \Psi_b \right\rangle \right|^2$$

• If the system has a complex energy eigen value, $E_r - \frac{i}{2}\Gamma$:

$$H|\Psi\rangle = \left(E_r - \frac{i}{2}\Gamma\right)|\Psi\rangle \qquad \Rightarrow \quad R_{\hat{O}}(E) = \frac{R_r}{\pi} \frac{\frac{\Gamma}{2}}{(E - E_r)^2 + \left(\frac{1}{2}\Gamma\right)^2}$$

• When the complex energy is close to real axis (i.e. Γ is small enough) so that $R_{\hat{O}}(E)$ has a peak around $E = E_r$, it is called as a resonance peak.

Note:
$$\hat{O}_c = \sum_{i=1}^3 e^{i\vec{Q}\cdot\vec{r}_i} t_i^{(-)}, \ \hat{O}_L = \sum_{i=1}^3 e^{i\vec{Q}\cdot\vec{r}_i} (\hat{Q}\cdot\hat{\sigma}_i) t_i^{(-)}, \ \hat{O}_T = \sum_{i=1}^3 e^{i\vec{Q}\cdot\vec{r}_i} (\hat{Q}\times\hat{\sigma}_i) t_i^{(-)}$$

Calculation of the Response functions

$$R_{\hat{O}}(E) = \int d\vec{q}d\vec{p} \left| \left\langle \Psi_{\vec{q}\vec{p}}^{(-)} (E_q + E_p) \middle| \hat{O} \middle| \Psi_b \right\rangle \right|^2 \delta(E - E_q - E_p)$$

• Use the Green's function method to avoid to calculate $\Psi_{\vec{q}\vec{p}}^{(-)}(E = E_q + E_p)$ for all possible combinations of E_q and E_p for a given E:

$$R_{\hat{O}}(E) = -\frac{1}{\pi} \operatorname{Im} \left\langle \Psi_{b} \middle| \hat{O}^{\dagger} \frac{1}{E + i\varepsilon - H} \hat{O} \middle| \Psi_{b} \right\rangle$$

• Def. $|\Psi(E)\rangle$: wave function corresponding to the process ${}^{3}H \to 3n$: $|\Psi(E)\rangle = \frac{1}{E + i\varepsilon - H} \hat{O} |\Psi_{b}\rangle$

Calculation of the Response functions

• Asymptotic form of $|\Psi(E)\rangle$ $\langle \vec{x}\vec{y}|\Psi \rangle = \langle \vec{x}\vec{y}| \frac{1}{E+i\varepsilon-H} \hat{O}|\Psi_b \rangle \rightarrow N \frac{e^{iKR}}{R^{5/2}} \langle \Psi_{\vec{q}\vec{p}}^{(-)}|\hat{O}|\Psi_b \rangle$ $R = \sqrt{x^2 + \frac{4}{3}y^2} \quad K = \sqrt{\frac{m}{\hbar^2}E}$

References: Faddeev calculations for $3\alpha(0^+)$ systems: S. I. : PRC **87** (2013) 055804, PRC **90** (2014) 061604, PRC **94** (2016) 061603

How to calculate the wave function $|\Psi(E)\rangle$

- Three-body problem under the 3-body Hamiltonian *H*
- Expression by the diagram

$$\Psi(E)\rangle = \frac{1}{E+i\varepsilon-H}\hat{O}|\Psi_b\rangle = \hat{O}|\Psi_b\rangle$$

 \rightarrow full 3-body dynamics including 3-body T-matrix T(E)

• Faddeev (1961) :

Decompose the T-matrix with respect to interaction pair in the final state

$$T(E) = T^{(1)}(E) + T^{(2)}(E) + T^{(3)}(E)$$

Apply the Faddeev theory to calculate $|\Psi(E)\rangle$

 Ref. L.D. Faddeev, "Scattering Theory for a Three-Particle System" Soviet Phys. JETP 12 (1961) 1014:

Decompose the T-matrix with respect to interaction pair in the final state

$$T(E) = T^{(1)}(E) + T^{(2)}(E) + T^{(3)}(E)$$

Faddeev equations for T-matrix

• Multiple scattering with rearrangements for the Faddeev components $T^{(i)}(E)$ (i = 1,2,3)

$$T^{(1)}(E) = t_1(E) + t_1(E)G_0(E) \left[T^{(2)}(E) + T^{(3)}(E) \right]$$

Faddeev equations for $|\Psi(E)\rangle$

Channel Hamiltonian

$$H_i = H_0 + V_i, \qquad H = H_i + V_j + V_k$$

• In general

$$\hat{O} = \hat{O}_1 + \hat{O}_2 + \hat{O}_3$$

Faddeev decomposition

$$|\Psi\rangle = \frac{1}{E + i\varepsilon - H} \hat{O} |\Psi_b\rangle = |\Phi_1\rangle + |\Phi_2\rangle + |\Phi_3\rangle$$

Faddeev equations for the Faddeev components

$$\begin{split} |\Phi_1\rangle &= \frac{1}{E + i\varepsilon - H_1} \hat{O}_1 |\Psi_b\rangle + \frac{1}{E + i\varepsilon - H_1} V_1(|\Phi_2\rangle + |\Phi_3\rangle) \\ (1,2,3) &\to (2,3,1) \to (3,1,2) \end{split}$$

Multiple scattering with rearrangement

$$|\Phi_{1}\rangle = \frac{1}{E + i\varepsilon - H_{1}} \hat{O}_{1} |\Psi_{b}\rangle + \frac{1}{E + i\varepsilon - H_{1}} V_{1} (|\Phi_{2}\rangle + |\Phi_{3}\rangle)$$

$$(\Phi_{3})$$

$$(\Phi_{3})$$

$$(\Phi_{2})$$

$$(\Phi_{2$$

4. Calculations of the response functions

Response function $R_{\hat{O}}(E,Q)$ for the transition from the ³H ground state to

 $3n\left(\frac{3}{2}\right)$ continuum state with $\hat{O} = \sum_{i=1}^{3} e^{i\vec{Q}\cdot\vec{r}_i} t_i^{(-)}$.

[0] Calculations with Argonne V18-nn potential

Extrapolation procedures with giving additional attractions to the 3n Hamiltonian

- [1] Multiplying a factor to the nn potential
- [2] Introducing a 3BP
- [3] Additional trapping potential

[0] Calculations with AV18-nn potential

Arrows: $E = \frac{Q^2}{2m} - B({}^{3}\mathrm{H}) - \frac{Q^2}{6m}$

Quasifree process that the momentum Q is absorbed by one neutron.

[1] Multiplying a factor to the nn potential

- Modify the *nn* potential by multiplying a factor (1α) $V({}^{2S+1}L_J) \rightarrow (1 - \alpha) \times V({}^{2S+1}L_J)$
- Note: $nn({}^{1}S_{0})$ -state has a bound state for $\alpha < -0.08$
- The factor will be multiplied only to $V({}^{3}P_{2} {}^{3}F_{2})$ [attractive]

$$nn({}^{3}P_{2} - {}^{3}F_{2})$$
 bound state exists for $\alpha < -3.39$
 $3n(\frac{3}{2})$ bound state exists for $\alpha < -2.98$

[1] Multiplying a factor to the nn potential

Q = 300, 400, and 500 MeV/c

• Fitting of the response function

$$R(E) = \frac{b(E - E_r) + c\Gamma}{(E - E_r)^2 + \Gamma^2/4} + a_0 + a_1(E - E_r) + a_2(E - E_r)^2$$

• Extracted values of E_r and Γ are Q-independent for $-2.7 \le \alpha \le -1.6$

[1] Multiplying a factor to the nn potential

- 3n binding energy
- - Fitted to 3n binding energy

Extracted
$$E_r \left(\pm \frac{\Gamma}{2}\right)$$

Peak energy

$$\alpha \rightarrow 0$$

No pole close to the real axis

[2] Introducing a 3BP

Three-body potential

$$W(T) = \sum_{n=1}^{2} W_n e^{-(r_{12}^2 + r_{23}^2 + r_{31}^2)/b_n^2} \hat{P}(T)$$

• Range parameters: $b_1 = 4.0 \text{ fm}, b_2 = 0.75 \text{ fm}$ Short range repulsive term $W_2 = +35.0 \text{ MeV}$ [Hiyama et al., PRC93 (2016) 044004]

Required value of W_1 for $4n(0^+)$ state to bind: $W_1 = -36.14$ MeV

• $n\left(\frac{3}{2}^{-}\right)$ bound state exists for $W_1 < -80$ MeV $\Leftrightarrow W_1 = -2.55$ MeV to reproduce ³H binding energy

Pole trajectory for 3n states and energy for $4n(0^+)$ states

[2] Introducing a 3BP

Q = 300, 400, and 500 MeV/c

 $[E_r \sim 4 \text{ MeV}, \Gamma \sim 10 \text{ MeV}]$ for $W_1 = -36 \text{ MeV}$

[3] Additional trapping potential

[0] Calculations with Argonne V18–*nn* potential No resonance peak

Extrapolation methods

[1] Multiplying a factor to the nn potential

[2] Introducing a 3BP

Complex pole energy is far from real axis \rightarrow nonexistence of 3n resonance

[3] Additional trapping potential \rightarrow existence of 3n resonance

"2*n*" system with Gaussian + trapping potential

•
$$3n\left(\frac{3}{2}\right)$$
 state ~ *n*-dineutron in P-wave (L = 1)

- 2-body ("2n") P-wave state in trapping-potential
- Effective potential:

$$V_{eff}(x) = v_G e^{-\left(\frac{x}{r_G}\right)^2} + \frac{\hbar^2 L(L+1)}{mx^2} + \sum_{i=1,2} W(r_i)$$
Parameters: $r_G = 2.5 \text{fm}$, $v_G = -50 \text{ MeV}$ "no resonance state"

$$W(r_i) = W_{WS} \frac{1}{1 + e^{(r_i - R_{WS})/a_{WS}}}, \qquad a_{WS} = 0.65 \text{ fm}$$

"2*n*" system with Gaussian + trapping potential

$$V_{\rm eff}(x) = v_G e^{-\left(\frac{x}{r_G}\right)^2} + \frac{\hbar^2 L(L+1)}{mx^2} + \sum_{i=1,2} W(r_i), \qquad L = 1$$

As the attractive effect is reduced, the barrier appears at positive energy.

 \rightarrow

An extra repulsive effect that does not exist for the bound states.

solid curves \rightarrow no bound state exists dashed curves \rightarrow a bound state

"2n" energies with trapping potential

Extrapolation of bound state energies \rightarrow

Positive energy at $W_{WS} = 0 \text{ MeV}$

However, soon after getting into the continuum region, the $W_{\rm WS}$ dependence is quite different from that in the bound state region.

The extrapolation is no longer reliable.

5. 3 He(*p*,*n*)*ppp*

3 He(p,n)ppp

Horizontal lines: $D_{NN}(0^\circ), D_{LL}(0^\circ)$ in p, n scattering

³He(p,n)ppp (
$$\theta_n = 0^\circ$$
) $T_p = 346$ MeV

$$\frac{d\sigma}{d\omega d\Omega}(0^\circ), D_{NN}(0^\circ), D_{LL}(0^\circ)$$

$$D_{LL}(0^\circ) ?$$

$$\omega_0 = 16 \pm 1 \text{ MeV} \quad \Gamma = 11 \pm 3 \text{ MeV}$$

Response functions

- Spin-isospin response function for the transition process: ${}^{3}\text{He} \rightarrow 3p$ $R_{C}(E), R_{L}(E), R_{T}(E)$
- $|\Phi_b\rangle$: ³He wave function

$$R_{C}(E) = \int dE' \sum_{f} \left| \left\langle \Psi_{f}(E') \right| \sum_{i} e^{i\vec{Q}\cdot\vec{r}_{i}} \tau_{i}^{+} \left| \Phi_{b} \right\rangle \right|^{2} \delta(E - E')$$

$$R_{L}(E) = \int dE' \sum_{f} \left| \left\langle \Psi_{f}(E') \right| \sum_{i} e^{i\vec{q}\cdot\vec{r}_{i}} \left(\hat{Q}\cdot\vec{\sigma}_{i}\right) \tau_{i}^{+} \left| \Phi_{b} \right\rangle \right|^{2} \delta(E - E')$$

$$R_{T}(E) = \int dE' \sum_{f} \left| \left\langle \Psi_{f}(E') \right| \sum_{i} e^{i\vec{q}\cdot\vec{r}_{i}} \left(\hat{Q}\times\vec{\sigma}_{i}\right) \tau_{i}^{+} \left| \Phi_{b} \right\rangle \right|^{2} \delta(E - E')$$

• Observables

$$\sigma \propto |t_c(Q)|^2 R_c + |t_L(Q)|^2 R_L + 2|t_T(Q)|^2 R_T$$
$$D_{LL} = \frac{|t_c(Q)|^2 R_c + |t_L(Q)|^2 R_L - 2|t_T(Q)|^2 R_T}{|t_c(Q)|^2 R_c + |t_L(Q)|^2 R_L + 2|t_T(Q)|^2 R_T}$$
$$D_{TT} = \frac{|t_c(Q)|^2 R_c - |t_L(Q)|^2 R_L}{|t_c(Q)|^2 R_c + |t_L(Q)|^2 R_L + 2|t_T(Q)|^2 R_T}$$

³He $(\vec{p}, \vec{n})ppp$ $T_p = 346$ MeV $\theta_n = 0^{\circ}$ NN-potentials: AV18, AV14, AV8', dTRS

Momentum transfer $Q \sim 10 - 50 \text{ MeV/c}$

Scattering amplitude of $pn \rightarrow np$ [SAID, NN-online]

 $t(\vec{Q}) = t_c(Q) + t_L(Q)(\hat{Q} \cdot \vec{\sigma}^0)(\hat{Q} \cdot \vec{\sigma}_i) + t_T(Q)(\hat{Q} \times \vec{\sigma}^0)(\hat{Q} \times \vec{\sigma}_i)$

NN-amplitude online database SAID Program, http://gwdac.phys.gwu.edu/

NN-OnLine http://nn-online.org/ ³He(p,n)ppp $T_p = 346$ MeV $\theta_n = 0^\circ$

Only 2NF vs. $2NF+3NF(W_1 = -36 \text{ MeV})$

Required value of W_1 for $4n(0^+)$ state to bind: $W_1 = -36.14 \text{ MeV}$

Three-body potential $W(T) = \sum_{n=1}^{2} W_n e^{-(r_{12}^2 + r_{23}^2 + r_{31}^2)/b_n^2} \hat{P}(T)$

6. Summary

• Three different extrapolating methods from 3n bound state energies to continuum states:

(i) to enhance component of the *nn* potential [No 3n resonance state]
(ii) to introduce a three-body force [No 3n resonance state]
(iii) to add an external attractive trapping potential [3n resonance state]

- This discrepancy occurs due to the longer range trapping potential, which destroys the potential barrier.
- This defect occurs in general, and the trapping method should be used carefully in studies of resonance states of few- and many-body systems.
- Precise calculations for reactions to study 3n or 3p systems (e.g,. ${}^{3}\text{He}(\vec{p},\vec{n})ppp$) are now available.