Faddeev calculations of three－neutron systems

Souichi Ishikawa
Hosei University，Tokyo，Japan
石川壮一＠法政大学

1. Introduction

Isospin of three-nucleon (3 N) systems $\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{1}{2}=\frac{1}{2}$ or $\frac{3}{2}$

	$\boldsymbol{n} \boldsymbol{n} \boldsymbol{n}$	$\boldsymbol{n} \boldsymbol{n} \boldsymbol{p}$	$\boldsymbol{n} \boldsymbol{p} \boldsymbol{p}$	$\boldsymbol{p} \boldsymbol{p} \boldsymbol{p}$
T		$-\frac{1}{2}\left[{ }^{3} \mathrm{H}, n d\right]$	$+\frac{1}{2}\left[{ }^{3} \mathrm{He}, p d\right]$	
$T=\frac{1}{2}$		$-\frac{3}{2}$		
$T=\frac{3}{2}$	$-\frac{3}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{3}{2}$

- Mostly studied 3 N systems: Examination of "bare" nucleon-nucleon ($p p$ and $p n$) force models.
- Rigorous 3 N calculations assure the existence of 3 N forces
\rightarrow applied to heavier nuclei
- What can we learn from the study of $T=\frac{3}{2} 3 \mathrm{~N}$ systems ($n n n, p p p$)?
-- direct information of $n n$-force and $T=\frac{3}{2} 3 \mathrm{~N}$ forces
\rightarrow apply to neutron-rich nuclei, neutron matter (neutron star)
- How to study $T=\frac{3}{2} 3 \mathrm{~N}$ systems (nnn,ppp):
-- No bound state
-- Final state of reactions: e.g., $\quad{ }^{3} \mathrm{He}\left(\pi^{-}, \pi^{+}\right) 3 n,{ }^{3} \mathrm{H}(n, p) 3 n$
- Experimental search for $3 n$ resonance

$$
{ }^{3} \mathrm{He}\left(\pi^{-}, \pi^{+}\right) 3 n,{ }^{7} \mathrm{Li}(n, 3 n),{ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li},{ }^{11} \mathrm{C}\right) 3 n,{ }^{7} \mathrm{Li}\left({ }^{11} \mathrm{~B},{ }^{15} \mathrm{O}\right) 3 n, \ldots
$$

Mostly negative, but a few positive results

- Experimental results that suggested the existence of $4 n$ resonant state:

$$
\left({ }^{14} \mathrm{Be},{ }^{10} \mathrm{Be}+4 n\right)[2002], \quad{ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right)[2016], \quad{ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li},{ }^{10} \mathrm{C}\right)[2022], \quad{ }^{8} \mathrm{He}\left(p, p{ }^{4} \mathrm{He}\right)[2022]
$$

Refs:
Marqués et al., PRC65 (2002), Kisamori et al., PRL 116 (2016),

$$
\text { Faestermann et al., PLB } 824 \text { (2022), M. Duer et al., Nature } 606 \text { (2022) }
$$

- Theoretical studies on $3 n \& 4 n$ systems \rightarrow contradictory results
- Review:

Marqués \& Carbonell (2021). Euro. Phys. J. A 57 (2021) 105.
https://doi.org/10.1140/epja/s10050-021-00417-8

In this presentation:

- Quick review of theoretical calculations of $3 n \& 4 n$ systems
- Theoretical method to study $3 n$ continuum state [Response function, Faddeev method]
- Results of $3 n$

Ref.: S. Ishikawa, Three-neutron bound and continuum states.
PRC 102 (2020) 034002
https://doi.org/10.1103/PhysRevC.102.034002

- Results of $3 p$

Ref.: S. Ishikawa, Spin-isospin excitation of ${ }^{3} \mathrm{He}$ with three-proton final state.
Prog. Theor. and Exp. Phys. 2018 (2018) 013D03
https://doi.org/10.1093/ptep/ptx183

2. Theoretical study for $3 n-(\& 4 n-)$ resonance

- Realistic nucleon-nucleon potentials

No bound state for $3 n$ - \& $4 n$-systems

- Resonance is related to a pole of t-matrix in complex energy

Pole trajectory in complex energy plane

Scattering t-matrix for complex energy ω

$$
t(\omega)=V+V \frac{1}{\omega-H_{0}} t(\omega)=V+V \frac{1}{\omega-H_{0}-V} V
$$

Discrete eigen value $\quad\left[H_{0}+V\right]|\Psi(z)\rangle=z|\Psi(z)\rangle$

$$
t(\omega)=V+V|\Psi(z)\rangle \frac{1}{\omega-z}\langle\Psi(z)| V+\cdots
$$

- Bound state: $z=E_{b}, \rightarrow$ pole at real energy $E_{b}<0$
- Complex energy: $z=E_{r}-\frac{i}{2} \Gamma \rightarrow$ pole at $\left(E_{r},-\frac{1}{2} \Gamma\right)$

$3 n$ studies in complex energy

- Complex energy eigenvales (1)
- Analytic continuation with separable potentials
- Complex energy eigenvales (2)
- Complex scaling method $\quad x \rightarrow x e^{i \varphi}$
\rightarrow Unphysically large attractive effect is required to obtaine $3 n$ bound state (or resonance)

Pole trajectory for $3 n$ states with separable $n n$ potential

PHYSICAL REVIEW C 66, 054001 (2002)

Indications for the nonexistence of three-neutron resonances near the physical region
A. Hemmdan, ${ }^{1,2, *}$ W. Glöckle, ${ }^{1, \dagger}$ and H. Kamada ${ }^{3, \dagger}$

Separable $n n$ potential: $\langle x| V\left|x^{\prime}\right\rangle=-\lambda v(x) v\left(x^{\prime}\right)$

FIG. 4. The resonance pole trajectory for the state $1 / 2^{-}$.

Pole trajectory for $3 n$ states with additional $3 n$ potential

PHYSICAL REVIEW C 71, 044004 (2005)

Three-neutron resonance trajectories for realistic interaction models

Rimantas Lazauskas*

DPTA/Service de Physique Nucléaire, CEA/DAM Ile de France, BP 12, F-91680 Bruyères-le-Châtel, France

$$
V_{i j k}\left(T=\frac{3}{2}\right)
$$

$$
\begin{equation*}
V_{3 n}=-W \frac{e^{-\frac{\rho}{\rho_{0}}}}{\rho}, \quad \text { with } \rho=\sqrt{x_{i j}^{2}+y_{i j}^{2}} \tag{13}
\end{equation*}
$$

with $\rho_{0}=2 \mathrm{fm}$. In this way, dineutron physics is not affected.

TABLE V. Critical strengths W_{0} in MeV fm of the phenomenological Yukawa-type force of Eq. (13) required to bind the three neutron in various states. Parameter ρ_{0} of this force was fixed to $2 \mathrm{fm} . W^{\prime}$ are the values at which three-neutron resonances become subthreshold ones, whereas $B_{\text {trit }}$ are such $3 N F$ corresponding triton binding energies in MeV .

J^{π}	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{5}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$
W_{0}	307	1062	809	515	413	629
W^{\prime}	152	-	329	118	146	277
$B_{\text {trit }}$	21.35	-	44.55	17.72	20.69	37.05

$3 n\left(J^{\pi}\right)$

$$
\begin{aligned}
& 3 n\left(\mathrm{~T}=\frac{3}{2}\right) \\
& n n p\left(\mathrm{~T}=\frac{1}{2}\right)
\end{aligned}
$$

$\operatorname{Re}(E)(\mathrm{MeV})$

$3 n$ and $4 n$ studies at real energy

- Neutrons confined in a trapping potential:

$$
\mathrm{W}\left(r_{i}\right)=V_{0} \frac{1}{1+e^{\left(r_{i}-R\right) / a_{\mathrm{WS}}}}
$$

Extrapolate to real world [Strength $V_{0} \rightarrow 0$]
\rightarrow Existence of $3 n$ and $4 n$ resonance

Energy for $4 n\left(0^{+}\right)$states

Can Modern Nuclear Hamiltonians Tolerate a Bound Tetraneutron?

Steven C. Pieper*

$4 n$

Physics Division, Argonne National Laboratory, A rgonne, Illinois 60439, USA

Artificial external wells of Woods-Saxon with (range, strength) $=\left(R, V_{0}\right)$

$$
\begin{gathered}
\mathrm{W}\left(r_{i}\right)=V_{0} \frac{1}{1+e^{\left(r_{i}-R\right) / a_{\mathrm{WS}}}} \\
a_{\mathrm{WS}}=0.65 \mathrm{fm}
\end{gathered}
$$

Energies for $3 n$ and $4 n$ states

Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?
S. Gandolfi, ${ }^{1, *}$ H.-W. Hammer, ${ }^{2,3, \uparrow}$ P. Klos, ${ }^{2,3, *}$ J. E. Lynn, ${ }^{2,3,8}$ and A. Schwenk ${ }^{2,3,4, \|}$

$\begin{array}{ll}4 n & E_{4 n} \sim 2 \mathrm{MeV} \\ 3 n & E_{3 n}<E_{4 n} \\ & \\ & \text { Monte Carlo method: } \\ \left.\begin{array}{l}\left\langle\mathbf{R} S \mid \Psi_{v}\right\rangle \\ =\langle\mathbf{R} S| \\ \end{array} \prod_{i=1}^{f^{c}\left(r_{i j}\right)}\right)\left(1+\sum_{i<1} F_{i j}+\sum_{i \ll k} F_{i j k}\right)\left|\Phi_{J M}\right\rangle,\end{array}$

Energies for $3 n$ and $4 n$ states

Ab initio no-core Gamow shell-model calculations of multineutron systems
J. G. Li, ${ }^{1}$ N. Michel $\odot,{ }^{2,3}$ B. S. Hu $\odot,{ }^{1}$ W. Zuo, ${ }^{2,3}$ and F. R. Xu $\odot^{1, *}$

$$
E_{4 n}=3 \sim 5 \mathrm{MeV}
$$

Ab initio no-core Gamow shell model

3. How to study 3-body system without 2-body bound state

Notations:

- Total Hamiltonian (only 2NF for simplicity)

$$
\begin{aligned}
& H=H_{0}+V_{1}+V_{2}+V_{3} \\
& \quad V_{1}=V_{23} \quad \text { etc. (odd man out notation) }
\end{aligned}
$$

- (Asymptotic) 3-body states are specified by momentum-variables $\vec{q}, \vec{p} \quad|\vec{q}, \vec{p}\rangle$

$$
H_{0}|E ; \vec{q}, \vec{p}\rangle=E|E ; \vec{q}, \vec{p}\rangle, \quad E=\frac{\hbar^{2}}{m} q^{2}+\frac{3 \hbar^{2}}{4 m} p^{2}=E_{q}+E_{p}
$$

- Eigenstate of 3-body Hamiltonian with going (+) / incoming (-) boundary conditions:

$$
H\left|\Psi_{\vec{q} \vec{p}}^{(\pm)}(E)\right\rangle=E\left|\Psi_{\vec{q} \vec{p}}^{(\pm)}(E)\right\rangle
$$

Reactions to study $3 n \& 3 p$ states

- Reactions to produce $3 n$ (or $3 p$) state with simple reaction mechanism

$$
\text { e.g., }{ }^{3} \mathrm{H}(n, p) 3 n \quad{ }^{3} \mathrm{He}(p, n) 3 p
$$

- In PWIA

Two processes: $n+p \rightarrow p+n,{ }^{3} \mathrm{H} \rightarrow n n n$ (or ${ }^{3} \mathrm{He} \rightarrow p p p$)
Transition amplitude: $\quad T \propto t_{n p \rightarrow p n} \times\left\langle\Psi_{\vec{q} \vec{p}}^{(-)}(E)\right| \hat{O}\left|\Psi_{b}\right\rangle$

Response functions

- In PWIA, the cross section can be written in terms of response function:

$$
\begin{aligned}
R_{\hat{O}}(E) & \left.=\int d \vec{q} d \vec{p}\left|\left\langle\Psi_{\vec{q} \vec{p}}^{(-)}\left(E_{q}+E_{p}\right)\right| \hat{O}\right| \Psi_{b}\right\rangle\left.\right|^{2} \delta\left(E-E_{q}-E_{p}\right) \\
& =-\frac{1}{\pi} \operatorname{Im}\left\langle\Psi_{b}\right| \hat{O}^{\dagger} \frac{1}{E+i \varepsilon-H} \hat{O}\left|\Psi_{b}\right\rangle
\end{aligned}
$$

- If the system has a complex energy eigen value, $E_{r}-\frac{i}{2} \Gamma$:

$$
H|\Psi\rangle=\left(E_{r}-\frac{i}{2} \Gamma\right)|\Psi\rangle \quad \rightarrow R_{\hat{O}}(E)=\frac{R_{r}}{\pi} \frac{\frac{\Gamma}{2}}{\left(E-E_{r}\right)^{2}+\left(\frac{1}{2} \Gamma\right)^{2}}
$$

- When the complex energy is close to real axis (i.e. Γ is small enough) so that $R_{\hat{O}}(E)$ has a peak around $E=E_{r}$, it is called as a resonance peak.

Note: $\hat{o}_{c}=\sum_{i=1}^{3} e^{i \vec{Q} \cdot \vec{r}_{i}} t_{i}^{(-)}, \widehat{o}_{L}=\sum_{i=1}^{3} e^{i \vec{a} \cdot \vec{r}_{i}}\left(\hat{Q} \cdot \hat{\sigma}_{i}\right) t_{i}^{(-)}, \hat{o}_{T}=\sum_{i=1}^{3} e^{i \vec{a} \cdot \vec{r}_{i}}\left(\hat{Q} \times \hat{\sigma}_{i}\right) t_{i}^{(-)}$

Calculation of the Response functions

$$
\left.R_{\hat{O}}(E)=\int d \vec{q} d \vec{p}\left|\left\langle\Psi_{\vec{q} \vec{p}}^{(-)}\left(E_{q}+E_{p}\right)\right| \hat{O}\right| \Psi_{b}\right\rangle\left.\right|^{2} \delta\left(E-E_{q}-E_{p}\right)
$$

- Use the Green's function method to avoid to calculate $\Psi_{\vec{q} \vec{p}}^{(-)}\left(E=E_{q}+E_{p}\right)$ for all possible combinations of E_{q} and E_{p} for a given E :

$$
R_{\hat{O}}(E)=-\frac{1}{\pi} \operatorname{Im}\left\langle\Psi_{b}\right| \hat{O}^{\dagger} \frac{1}{E+i \varepsilon-H} \hat{O}\left|\Psi_{b}\right\rangle
$$

- Def. $|\Psi(E)\rangle$: wave function corresponding to the process ${ }^{3} \mathrm{H} \rightarrow 3 n$:

$$
|\Psi(E)\rangle=\frac{1}{E+i \varepsilon-H} \hat{O}\left|\Psi_{b}\right\rangle
$$

Calculation of the Response functions

- Asymptotic form of $|\Psi(E)\rangle$

$$
\langle\vec{x} \vec{y} \mid \Psi\rangle=\langle\vec{x} \vec{y}| \frac{1}{E+i \varepsilon-H} \hat{O}\left|\Psi_{b}\right\rangle \rightarrow N \frac{e^{i K R}}{R^{5 / 2}}\left\langle\Psi_{\vec{q} \vec{p}}^{(-)}\right| \hat{O}\left|\Psi_{b}\right\rangle
$$

$$
R=\sqrt{x^{2}+\frac{4}{3} y^{2}} \quad K=\sqrt{\frac{m}{\hbar^{2}} E}
$$

- Once the function $|\Psi(E)\rangle$ is obtained, all of the 3-body breakup amplitudes $\left\langle\Psi_{\vec{q} \vec{p}}^{(-)}\right| \hat{O}\left|\Psi_{b}\right\rangle$ are calculated from $|\Psi(E)\rangle$.

How to calculate the wave function $|\Psi(E)\rangle$

- Three-body problem under the 3-body Hamiltonian H
- Expression by the diagram

$$
|\Psi(E)\rangle=\frac{1}{E+i \varepsilon-H} \widehat{O}\left|\Psi_{b}\right\rangle=
$$

- \rightarrow full 3-body dynamics including 3-body T-matrix $T(E)$
- Faddeev (1961) :

Decompose the T-matrix with respect to interaction pair in the final state

$$
T(E)=T^{(1)}(E)+T^{(2)}(E)+T^{(3)}(E)
$$

Apply the Faddeev theory to calculate $|\Psi(E)\rangle$

- Ref. L.D. Faddeev, "Scattering Theory for a Three-Particle System" Soviet Phys. JETP 12 (1961) 1014:
Decompose the T-matrix with respect to interaction pair in the final state

Faddeev equations for T-matrix

- Multiple scattering with rearrangements for the Faddeev components $T^{(i)}(E)(i=1,2,3)$

$$
T^{(1)}(E)=t_{1}(E)+t_{1}(E) G_{0}(E)\left[T^{(2)}(E)+T^{(3)}(E)\right]
$$

Faddeev equations for $|\Psi(E)\rangle$

- Channel Hamiltonian

$$
H_{i}=H_{0}+V_{i}, \quad H=H_{i}+V_{j}+V_{k}
$$

- In general

$$
\widehat{O}=\hat{O}_{1}+\hat{O}_{2}+\hat{O}_{3}
$$

- Faddeev decomposition

$$
|\Psi\rangle=\frac{1}{E+i \varepsilon-H} \hat{O}\left|\Psi_{b}\right\rangle=\left|\Phi_{1}\right\rangle+\left|\Phi_{2}\right\rangle+\left|\Phi_{3}\right\rangle
$$

- Faddeev equations for the Faddeev components

$$
\begin{aligned}
& \left|\Phi_{1}\right\rangle=\frac{1}{E+i \varepsilon-H_{1}} \widehat{o}_{1}\left|\Psi_{b}\right\rangle+\frac{1}{E+i \varepsilon-H_{1}} V_{1}\left(\left|\Phi_{2}\right\rangle+\left|\Phi_{3}\right\rangle\right) \\
& (1,2,3) \rightarrow(2,3,1) \rightarrow(3,1,2)
\end{aligned}
$$

Multiple scattering with rearrangement

$$
\left|\Phi_{1}\right\rangle=\frac{1}{E+i \varepsilon-H_{1}} \hat{o}_{1}\left|\Psi_{b}\right\rangle+\frac{1}{E+i \varepsilon-H_{1}} V_{1}\left(\left|\Phi_{2}\right\rangle+\left|\Phi_{3}\right\rangle\right)
$$

4. Calculations of the response functions

Response function $R_{\hat{O}}(E, Q)$ for the transition from the ${ }^{3} \mathrm{H}$ ground state to
$3 n\left(\frac{3^{-}}{2}\right)$ continuum state with $\hat{O}=\sum_{i=1}^{3} e^{i \vec{Q} \cdot \vec{r}_{i}} t_{i}^{(-)}$.
[0] Calculations with Argonne V18-nn potential

Extrapolation procedures with giving additional attractions to the $3 n$ Hamiltonian
[1] Multiplying a factor to the $n n$ potential
[2] Introducing a 3BP
[3] Additional trapping potential

[0] Calculations with AV18-nn potential

Arrows:

$$
E=\frac{Q^{2}}{2 m}-B\left({ }^{3} \mathrm{H}\right)-\frac{Q^{2}}{6 m}
$$

Quasifree process that the momentum Q is absorbed by one neutron.

[1] Multiplying a factor to the $n n$ potential

- Modify the $n n$ potential by multiplying a factor $(1-\alpha)$

$$
V\left({ }^{2 S+1} L_{J}\right) \rightarrow(1-\alpha) \times V\left({ }^{2 S+1} L_{J}\right)
$$

- Note: $n n\left({ }^{1} S_{0}\right)$-state has a bound state for $\alpha<-0.08$
- The factor will be multiplied only to $V\left({ }^{3} P_{2}-{ }^{3} F_{2}\right)$ [attractive]
$n n\left({ }^{3} P_{2}-{ }^{3} F_{2}\right)$ bound state exists for $\alpha<-3.39$
$3 n\left(\frac{3^{-}}{2}\right)$ bound state exists for $\alpha<-2.98$

[1] Multiplying a factor to the $n n$ potential

$$
Q=300,400, \text { and } 500 \mathrm{MeV} / \mathrm{c}
$$

- Fitting of the response function

$$
\begin{gathered}
R(E)=\frac{b\left(E-E_{r}\right)+c \Gamma}{\left(E-E_{r}\right)^{2}+\Gamma^{2} / 4} \\
+a_{0}+a_{1}\left(E-E_{r}\right) \\
+a_{2}\left(E-E_{r}\right)^{2}
\end{gathered}
$$

- Extracted values of E_{r} and Γ are Q independent for $-2.7 \leq \alpha \leq-1.6$

[1] Multiplying a factor to the $n n$ potential

[2] Introducing a 3BP

- Three-body potential

$$
W(T)=\sum_{n=1}^{2} W_{n} e^{-\left(r_{12}^{2}+r_{23}^{2}+r_{31}^{2}\right) / b_{n}^{2}} \hat{P}(T)
$$

- Range parameters: $b_{1}=4.0 \mathrm{fm}, b_{2}=0.75 \mathrm{fm}$ Short range repulsive term $W_{2}=+35.0 \mathrm{MeV}$
[Hiyama et al., PRC93 (2016) 044004]
Required value of W_{1} for $4 n\left(0^{+}\right)$state to bind: $W_{1}=-36.14 \mathrm{MeV}$
- $n\left(\frac{3}{2}^{-}\right)$bound state exists for $W_{1}<-80 \mathrm{MeV}$
$\Leftrightarrow W_{1}=-2.55 \mathrm{MeV}$ to reproduce ${ }^{3} \mathrm{H}$ binding energy

Pole trajectory for $3 n$ states and energy for $4 n\left(0^{+}\right)$states
PHYSICAL REVIEW C 93, 044004 (2016)
Possibility of generating a 4-neutron resonance with a $T=3 / 2$ isospin 3-neutron force
E. Hiyama

Nishina Center for Accelerator-Based Science, RIKEN, Wako, 351-0198, Japan
R. Lazauskas

IPHC, IN2P3-CNRS/Universite Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2, France
J. Carbonell

Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex, France
M. Kamimura

$$
V_{i j k}\left(T=\frac{3}{2}\right)
$$

$4 n$

$$
\begin{array}{ll}
120^{-} & \text {(b) }{ }^{4} n \quad \text { resonance } \\
J^{\pi}=0^{+}
\end{array}
$$

RIKEN2016 experiment ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right)$

[2] Introducing a 3BP

- $3 n$ binding energy
- - Fitted to $3 n$ binding energy
- Extracted $E_{r}\left(\pm \frac{\Gamma}{2}\right)$
- Peak energy

$$
W_{1} \rightarrow 0
$$

No pole close to the real axis

$$
\left[E_{r} \sim 4 \mathrm{MeV},\lceil\sim 10 \mathrm{MeV}] \text { for } W_{1}=-36 \mathrm{MeV}\right.
$$

[3] Additional trapping potential

$$
\mathrm{W}\left(r_{i}\right)=W_{\mathrm{WS}} \frac{1}{1+e^{\left(r_{i}-R_{\mathrm{WS}}\right) / a_{\mathrm{WS}}}}, \quad a_{\mathrm{WS}}=0.65 \mathrm{fm}
$$

$3 n$ resonance ?

Similar result with Gandolfi(2019) \& Li(2019), which suggest the existence of $3 n$ resonance.
[0] Calculations with Argonne V18-nn potential No resonance peak

Extrapolation methods
[1] Multiplying a factor to the $n n$ potential
[2] Introducing a 3BP
Complex pole energy is far from real axis \rightarrow nonexistence of $3 n$ resonance
[3] Additional trapping potential
\rightarrow existence of $3 n$ resonance

"2n" system with Gaussian + trapping potential

- $3 n\left(\frac{3}{2}^{-}\right)$state $\sim n$-dineutron in P-wave $(\mathrm{L}=1)$
- 2-body (" $2 n$ ") P-wave state in trapping-potential
- Effective potential:

$$
V_{\mathrm{eff}}(x)=v_{G} e^{-\left(\frac{x}{r_{G}}\right)^{2}}+\frac{\hbar^{2} L(L+1)}{m x^{2}}+\sum_{i=1,2} W\left(r_{i}\right)
$$

Parameters: $r_{G}=2.5 \mathrm{fm}, v_{G}=-50 \mathrm{MeV}$ "no resonance state"

$$
\mathrm{W}\left(r_{i}\right)=W_{\mathrm{Ws}} \frac{1}{1+e^{\left(r_{i}-R_{\mathrm{Ws}}\right) / a_{\mathrm{Ws}}}}, \quad a_{\mathrm{WS}}=0.65 \mathrm{fm}
$$

" $2 n$ " system with Gaussian + trapping potential

$$
V_{\mathrm{eff}}(x)=v_{G} e^{-\left(\frac{x}{r_{G}}\right)^{2}}+\frac{\hbar^{2} L(L+1)}{m x^{2}}+\sum_{i=1,2} W\left(r_{i}\right), \quad L=1
$$

As the attractive effect is reduced, the barrier appears at positive energy.
\rightarrow
An extra repulsive effect that does not exist for the bound states.
solid curves \rightarrow no bound state exists

" $2 n$ " energies with trapping potential

- \square Bound state
$\bigcirc \square \triangle$ Resonance (phase shift= 90°)

Extrapolation of bound state energies
Positive energy at $W_{\mathrm{Ws}}=0 \mathrm{MeV}$

However, soon after getting into the continuum region, the $W_{\text {Ws }}$ dependence is quite different from that in the bound state region.

The extrapolation is no longer reliable.

5. ${ }^{3} \mathrm{He}(p, n) p p p$

PHYSICAL REVIEW C 77, 054611 (2008)

Complete set of polarization transfer coefficients for the ${ }^{3} \mathrm{He}(p, n)$ reaction at 346 MeV and 0 degrees
T. Wakasa, ${ }^{1, *}$ E. Ihara, ${ }^{1}$ M. Dozono, ${ }^{1}$ K. Hatanaka, ${ }^{2}$ T. Imamura, ${ }^{1}$ M. Kato, ${ }^{2}$ S. Kuroita, ${ }^{1}$ H. Matsubara, ${ }^{2}$ T. Noro, ${ }^{1}$ H. Okamura, ${ }^{2}$ K. Sagara, ${ }^{1}$ Y. Sakemi, ${ }^{3}$ K. Sekiguchi, ${ }^{4}$ K. Suda, ${ }^{2}$ T. Sueta, ${ }^{1}$ Y. Tameshige, ${ }^{2}$ A. Tamii, ${ }^{2}$ H. Tanabe, ${ }^{1}$ and Y. Yamada

PWIA

${ }^{3} \mathrm{He}(p, n) p p p$

$$
D_{L L}\left(0^{\circ}\right) ?
$$

Horizontal lines:

$D_{N N}\left(0^{\circ}\right), D_{L L}\left(0^{\circ}\right)$ in p, n scattering

$$
\begin{aligned}
& { }^{3} \mathrm{He}(p, n) p p p\left(\theta_{n}=0^{\circ}\right) \quad T_{p}=346 \mathrm{MeV} \\
& \frac{d \sigma}{d \omega d \Omega}\left(0^{\circ}\right), D_{N N}\left(0^{\circ}\right), D_{L L}\left(0^{\circ}\right) \\
& \left.0^{\circ}\right) ? \\
& \omega_{0}=16 \pm 1 \mathrm{MeV} \quad \Gamma=11 \pm 3 \mathrm{MeV}
\end{aligned}
$$

Response functions

- Spin-isospin response function for the transition process: ${ }^{3} \mathrm{He} \rightarrow 3 p$

$$
R_{C}(E), R_{L}(E), R_{T}(E)
$$

- $\left|\Phi_{b}\right\rangle:{ }^{3} \mathrm{He}$ wave function

$$
\begin{gathered}
\left.R_{C}(E)=\int d E^{\prime} \sum_{f}\left|\left\langle\Psi_{f}\left(E^{\prime}\right)\right| \sum_{i} e^{i \vec{Q} \cdot \vec{r}_{i}} \tau_{i}^{+}\right| \Phi_{b}\right\rangle\left.\right|^{2} \delta\left(E-E^{\prime}\right) \\
\left.R_{L}(E)=\int d E^{\prime} \sum_{f}\left|\left\langle\Psi_{f}\left(E^{\prime}\right)\right| \sum_{i} e^{i \vec{q} \cdot \overrightarrow{r_{i}}}\left(\hat{Q} \cdot \vec{\sigma}_{i}\right) \tau_{i}^{+}\right| \Phi_{b}\right\rangle\left.\right|^{2} \delta\left(E-E^{\prime}\right) \\
\left.R_{T}(E)=\int d E^{\prime} \sum_{f}\left|\left\langle\Psi_{f}\left(E^{\prime}\right)\right| \sum_{i} e^{i \vec{q} \cdot \vec{r}_{i}}\left(\hat{Q} \times \vec{\sigma}_{i}\right) \tau_{i}^{+}\right| \Phi_{b}\right\rangle\left.\right|^{2} \delta\left(E-E^{\prime}\right)
\end{gathered}
$$

- Observables

$$
\begin{aligned}
\sigma & \propto\left|t_{c}(Q)\right|^{2} R_{C}+\left|t_{L}(Q)\right|^{2} R_{L}+2\left|t_{T}(Q)\right|^{2} R_{T} \\
D_{L L} & =\frac{\left|t_{c}(Q)\right|^{2} R_{C}+\left|t_{L}(Q)\right|^{2} R_{L}-2\left|t_{T}(Q)\right|^{2} R_{T}}{\left|t_{c}(Q)\right|^{2} R_{C}+\left|t_{L}(Q)\right|^{2} R_{L}+2\left|t_{T}(Q)\right|^{2} R_{T}} \\
D_{T T} & =\frac{\left|t_{c}(Q)\right|^{2} R_{C}-\left|t_{L}(Q)\right|^{2} R_{L}}{\left|t_{c}(Q)\right|^{2} R_{C}+\left|t_{L}(Q)\right|^{2} R_{L}+2\left|t_{T}(Q)\right|^{2} R_{T}}
\end{aligned}
$$

${ }^{3} \mathrm{He}(\vec{p}, \vec{n}) p p p \quad T_{p}=346 \mathrm{MeV} \quad \theta_{n}=0^{\circ}$

 NN-potentials: AV18, AV14, AV8', dTRS

Momentum transfer $Q \sim 10-50 \mathrm{MeV} / \mathrm{c}$

Scattering amplitude of $p n \rightarrow n p \quad$ [SAID, NN-online]
$t(\vec{Q})=t_{c}(Q)+t_{L}(Q)\left(\hat{Q} \cdot \vec{\sigma}^{0}\right)\left(\hat{Q} \cdot \vec{\sigma}_{i}\right)+t_{T}(Q)\left(\hat{Q} \times \vec{\sigma}^{0}\right)\left(\hat{Q} \times \vec{\sigma}_{i}\right)$

NN-amplitude online database
SAID Program,
http://gwdac.phys.gwu.edu/
NN-OnLine
http://nn-online.org/

Only $2 N F$ vs. $2 N F+3 N F\left(W_{1}=-36 \mathrm{MeV}\right)$

Required value of W_{1} for $4 n\left(0^{+}\right)$state to bind:
$W_{1}=-36.14 \mathrm{MeV}$

Three-body potential

$$
W(T)=\sum_{n=1}^{2} W_{n} e^{-\left(r_{12}^{2}+r_{23}^{2}+r_{31}^{2}\right) / b_{n}^{2}} \hat{P}(T)
$$

6. Summary

- Three different extrapolating methods from $3 n$ bound state energies to continuum states:
(i) to enhance component of the $n n$ potential [No 3n resonance state]
(ii) to introduce a three-body force [No 3n resonance state]
(iii) to add an external attractive trapping potential [3n resonance state]
- This discrepancy occurs due to the longer range trapping potential, which destroys the potential barrier.
- This defect occurs in general, and the trapping method should be used carefully in studies of resonance states of few- and many-body systems.
- Precise calculations for reactions to study 3n or 3p systems (e.g,. $\left.{ }^{3} \mathrm{He}(\vec{p}, \vec{n}) p p p\right)$ are now available.

