2022.10.31 Group meeting

Reading Phys. Lett. B 809, 135748 (2020)

Probing the Z = 6 spin-orbit shell gap with (p,2p) quasi-free scattering reactions

Junzhe Liu Jizheng Bo

Basic picture of QFS?

Theoretical framework of QFS?

How can the experiment reveal the reduction of the shell gap?

Quasi-free scattering

Used to describe (p, pn) reactions

The projectile only interacts only with the removed nucleon, leaving the state of B unchanged.

Calculation

T matrix:
$$T_{p,pN} = \sqrt{S(lj)} \left\langle \chi_{\mathbf{k}_{p}^{(-)}}^{(-)} \chi_{\mathbf{k}_{N}^{(-)}}^{(-)} \left| \tau_{pN} \right| \chi_{\mathbf{k}_{p}^{(+)}}^{(+)} \psi_{jlm} \right\rangle$$
Fourier transform of the interaction
$$T_{p,pN} = \sqrt{S(lj)} \int d^{3}\mathbf{r}_{pB}^{\prime} d^{3}\mathbf{r}_{nB} d^{3}\mathbf{r}_{pA} d^{3}\mathbf{r}_{nB}$$

$$\approx \tau \left(\mathbf{r}_{pB}^{\prime}, \mathbf{r}_{nB}^{\prime}; \mathbf{r}_{pA}, \mathbf{r}_{NB} \right)$$
"the range of the pN interaction is much smaller than the nuclear size"
$$\times \chi_{\mathbf{k}_{p}^{(-)*}}^{(-)*} \left(\mathbf{r}_{nB}^{\prime} \right) \chi_{\mathbf{k}_{N}}^{(-)*} \left(\mathbf{r}_{nB}^{\prime} \right)$$

$$\times \chi_{\mathbf{k}_{p}^{(+)}}^{(+)} \left(\mathbf{r}_{pA} \right) \psi_{jlm} \left(\mathbf{r}_{nB} \right)$$
Zero-range approximation ?

Eikonal approximation:

$$\chi_i(\mathbf{r})^{\text{in(out)}} = \exp\left[i\mathbf{k}_i^{\text{in(out)}} \cdot \mathbf{r}\right] \times \exp\left[-\frac{i}{\hbar v} \int_{a_{in(out)}}^{b_{in(out)}} dz' U_i^{\text{in(out)}}(\mathbf{r}')\right]$$

[1]T. Aumann, C.A. Bertulani, J. Ryckebusch, Phys. Rev. C 88 (2013) 064610

A simple shell model picture

Ground state of O

Proton excitation of O

 $\begin{array}{ll} 0_{1}^{+} \text{State of O:} & |0_{1}^{+}, ^{A-1} \text{C} \rangle \approx |\nu(sd)^{n}; J = 0 \rangle \otimes |\pi(1p_{3/2})^{4}; J = 0 \rangle \\ 2_{1}^{+} \text{State of O:} & |2_{1}^{+}, ^{A-1} \text{C} \rangle \approx \alpha |\nu(sd)^{n}; J = 2 \rangle \otimes |\pi(1p_{3/2})^{4}; J = 0 \rangle \\ & +\beta |\nu(sd)^{n}; J = 0 \rangle \otimes |\pi(1p_{3/2})^{3}(1p_{1/2})^{1}; J = 2 \rangle \end{array}$

Ground state of ^{A}N :

 $|1/2^{-,A} N\rangle \approx |\nu(sd)^n; J=0\rangle \otimes |\pi(1p_{3/2})^4(1p_{1/2})^1; J=1/2\rangle$

Some results

	State	Orbital	$\sigma_{\mathrm{exp}}[\mathrm{mb}]$	$\sigma_{ m theo}[m mb]$	$C^2 S_{exp}$
¹⁷ N(p,2p) ¹⁶ C	inclusive		3.82(19)		
	0+	$1p_{1/2}$	2.83(20)	6.171	0.46(3)
	2+	$1p_{3/2}$	0.68(9)	5.929	0.11(2)
¹⁹ N(p,2p) ¹⁸ C	inclusive		3.66(14)		
	0+	$1p_{1/2}$	2.53(15)	5.267	0.48(3)
	2+	$1p_{3/2}$	0.45(7)	5.193	0.09(1)
²¹ N(p,2p) ²⁰ C	inclusive		2.65(34)		
	0+	$1p_{1/2}$	1.87(38)	4.554	0.41(8)
	2+	$1p_{3/2}$	0.78(17)	4.458	0.17(4)

inclusive cross section and

exclusive cross section for a particular single-particle state

How experiment separates cross section induced by different s.p. state?

Data reduction

Reduction of β^2 [2]:

$$\frac{\sigma_{exp}(2_1^+)}{\sigma_{exp}(0_1^+)} \times \frac{\sigma_{theo}(p_{1/2})}{\sigma_{theo}(p_{3/2})} = \frac{C^2 S(2_1^+)}{C^2 S(0_1^+)} = \beta^2 \times \frac{5}{2}$$

	State	Orbital	$\sigma_{\exp}[{ m mb}]$	$\sigma_{ m theo}[m mb]$	$C^2 S_{exp}$	β ² [%]
¹⁷ N(p,2p) ¹⁶ C	inclusive		3.82(19)			
	0+	$1p_{1/2}$	2.83(20)	6.171	0.46(3)	
	2+	$1p_{3/2}$	0.68(9)	5.929	0.11(2)	10.0(15)
¹⁹ N(p,2p) ¹⁸ C	inclusive		3.66(14)			
	0+	$1p_{1/2}$	2.53(15)	5.267	0.48(3)	
	2+	$1p_{3/2}$	0.45(7)	5.193	0.09(1)	7.2(12)
²¹ N(p,2p) ²⁰ C	inclusive		2.65(34)			
	0+	$1p_{1/2}$	1.87(38)	4.554	0.41(8)	
	2+	$1p_{3/2}$	0.78(17)	4.458	0.17(4)	17.0(51)

[2] M. Petri, ... Structure of ¹⁶C: testing shell model and ab initio approaches, Phys. Rev. C 86 (4) (2012) 044329,

Comparison with shell model results

A decline is observed in the experiment

Some results

In first order perturbation theory, the proton amplitude is given by:

$$\beta \sim \frac{V_{\pi\nu}}{E_{2^+_{\pi}} - E_{2^+_{\nu}}}$$
?

 $V_{\pi\nu}$: matrix element mixing the unperturbed 2^+_{π} and 2^+_{ν} states

The denominator is dominated by the difference between the proton $1p_{1/2}$ and $1p_{3/2}$ level energies $\Delta E_{so} = e_{1/2} - e_{3/2}$

"The driving mechanism behind the evolution of the $\pi 1 p_{1/2}$ and $\pi 1 p_{3/2}$ orbits as function of isospin is the combined effect of the tensor (mainly) and two-body spin-orbit forces acting on the 1*p* protons when neutrons are added in the $d_{5/2}$ and $s_{1/2}$ orbits."

Summary

- 1. Carry out QFS experiment of N(p,2p)C, get the inclusive and exclusive cross section.
- 2. Calculate cross sections for different s.p. state based on eikonal approximation.
- 3. Set up a shell model picture to describe the structure of *N* and *C*.
- 4. Derive the proton amplitude β from ratios of SFs.
- 5. An increase of β towards the drip line indicates a moderate quenching of $Z = 6 \ 1p$ spin-orbit splitting gap.